Cell Stress and Chaperones

, Volume 22, Issue 4, pp 467–479 | Cite as

Interaction of small heat shock proteins with light component of neurofilaments (NFL)

  • Victoria V. Nefedova
  • Maria V. Sudnitsyna
  • Nikolai B. Gusev


The interaction of human small heat shock protein HspB1, its point mutants associated with distal hereditary motor neuropathy, and three other small heat shock proteins (HspB5, HspB6, HspB8) with the light component of neurofilaments (NFL) was analyzed by differential centrifugation, analytical ultracentrifugation, and fluorescent spectroscopy. The wild-type HspB1 decreased the quantity of NFL in pellets obtained after low- and high-speed centrifugation and increased the quantity of NFL remaining in the supernatant after high-speed centrifugation. Part of HspB1 was detected in the pellet of NFL after high-speed centrifugation, and at saturation, 1 mol of HspB1 monomer was bound per 2 mol of NFL. Point mutants of HspB1 associated with distal hereditary motor neuropathy (G84R, L99M, R140G, K141Q, and P182S) were almost as effective as the wild-type HspB1 in modulation of NFL assembly. At low ionic strength, HspB1 weakly interacted with NFL tetramers, and this interaction was increased upon salt-induced polymerization of NFL. HspB1 and HspB5 (αB-crystallin) decreased the rate of NFL polymerization measured by fluorescent spectroscopy. HspB6 (Hsp20) and HspB8 (Hsp22) were less effective than HspB1 (or HspB5) in modulation of NFL assembly. The data presented indicate that the small heat shock proteins affect NFL transition from tetramers to filaments, hydrodynamic properties of filaments, and their bundling and therefore probably modulate the formation of intermediate filament networks in neurons.


Small heat shock proteins Neurofilaments Cytoskeleton Intermediate filaments Neurodegenerative diseases 





Intermediate filaments


Isopropyl β-D-1-thiogalactopyranoside




Size-exclusion chromatography


Small heat shock proteins


Trichloroacetic acid



The authors are grateful to Dr. Oleg Klychnikov (Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium) for the valuable discussion and linguistic advice. Investigation of the effect of HspB1 mutants on NFL assembly was supported by grant 16-04-00016 of the Russian Foundation for Basic Science, and investigation of different small heat shock proteins was supported by grant 14-35-00026 of the Russian Science Foundation (RSF).


  1. Ackerley S, James PA, Kalli A, French S, Davies KE, Talbot K (2006) A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet 15(2):347–354. doi: 10.1093/hmg/ddi452 CrossRefPubMedGoogle Scholar
  2. Angelides KJ, Smith KE, Takeda M (1989) Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures. J Cell Biol 108(4):1495–1506CrossRefPubMedGoogle Scholar
  3. Arrigo AP (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett 587(13):1959–1969. doi: 10.1016/j.febslet.2013.05.011 CrossRefPubMedGoogle Scholar
  4. Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO (2014) Neuropathy- and myopathy-associated mutations in human small heat shock proteins: characteristics and evolutionary history of the mutation sites. Mutat Res. doi: 10.1016/j.mrrev.2014.02.004 Google Scholar
  5. Block J, Schroeder V, Pawelzyk P, Willenbacher N, Koster S (2015) Physical properties of cytoplasmic intermediate filaments. Biochim Biophys Acta 1853(11 Pt B):3053–3064. doi: 10.1016/j.bbamcr.2015.05.009 CrossRefPubMedGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Bucci C, Bakke O, Progida C (2012) Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 99(3):191–225. doi: 10.1016/j.pneurobio.2012.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chalova AS, Sudnitsyna MV, Strelkov SV, Gusev NB (2014) Characterization of human small heat shock protein HspB1 that carries C-terminal domain mutations associated with hereditary motor neuron diseases. Biochim Biophys Acta 1844(12):2116–2126. doi: 10.1016/j.bbapap.2014.09.005 CrossRefPubMedGoogle Scholar
  9. Cleverley KE, Betts JC, Blackstock WP, Gallo JM, Anderton BH (1998) Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry. Biochemistry 37(11):3917–3930. doi: 10.1021/bi9724523 CrossRefPubMedGoogle Scholar
  10. Datskevich PN, Nefedova VV, Sudnitsyna MV, Gusev NB (2012) Mutations of small heat shock proteins and human congenital diseases. Biochemistry 77(13):1500–1514. doi: 10.1134/S0006297912130081 PubMedGoogle Scholar
  11. Djabali K, de Nechaud B, Landon F, Portier MM (1997) AlphaB-crystallin interacts with intermediate filaments in response to stress. J Cell Sci 110(Pt 21):2759–2769PubMedGoogle Scholar
  12. Elliott JL, Der Perng M, Prescott AR, Jansen KA, Koenderink GH, Quinlan RA (2013) The specificity of the interaction between alphaB-crystallin and desmin filaments and its impact on filament aggregation and cell viability. Philos Trans R Soc Lond Ser B Biol Sci 368(1617):20120375. doi: 10.1098/rstb.2012.0375 CrossRefGoogle Scholar
  13. Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119(7):1763–1771. doi: 10.1172/JCI38339 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RK, Gettemans J, Robberecht W, De Jonghe P, Timmerman V (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36(6):602–606. doi: 10.1038/ng1354 CrossRefPubMedGoogle Scholar
  15. Ghosh JG, Houck SA, Clark JI (2007) Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. Int J Biochem Cell Biol 39(10):1804–1815. doi: 10.1016/j.biocel.2007.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Heins S, Wong PC, Muller S, Goldie K, Cleveland DW, Aebi U (1993) The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J Cell Biol 123(6 Pt 1):1517–1533CrossRefPubMedGoogle Scholar
  17. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem 73:749–789. doi: 10.1146/annurev.biochem.73.011303.073823 CrossRefPubMedGoogle Scholar
  18. Holmgren A, Bouhy D, De Winter V, Asselbergh B, Timmermans JP, Irobi J, Timmerman V (2013) Charcot-Marie-Tooth causing HSPB1 mutations increase Cdk5-mediated phosphorylation of neurofilaments. Acta Neuropathol 126(1):93–108. doi: 10.1007/s00401-013-1133-6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Houck SA, Landsbury A, Clark JI, Quinlan RA (2011) Multiple sites in alphaB-crystallin modulate its interactions with desmin filaments assembled in vitro. PLoS One 6(11):e25859. doi: 10.1371/journal.pone.0025859 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ip W, Fellows ME (1990) Fluorescent measurement of desmin intermediate filament assembly. Anal Biochem 185(1):10–16CrossRefPubMedGoogle Scholar
  21. Kayser J, Haslbeck M, Dempfle L, Krause M, Grashoff C, Buchner J, Herrmann H, Bausch AR (2013) The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys J 105(8):1778–1785. doi: 10.1016/j.bpj.2013.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kornreich M, Avinery R, Malka-Gibor E, Laser-Azogui A, Beck R (2015) Order and disorder in intermediate filament proteins. FEBS Lett 589(19 Pt A):2464–2476. doi: 10.1016/j.febslet.2015.07.024 CrossRefPubMedGoogle Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685CrossRefPubMedGoogle Scholar
  24. Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R (2015) Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 32:92–101. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  25. Lelj-Garolla B, Mauk AG (2006) Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem 281(12):8169–8174. doi: 10.1074/jbc.M512553200 CrossRefPubMedGoogle Scholar
  26. Lifsics MR, Williams RC Jr (1984) Physicochemical characterization of the 68 000-Dalton protein of bovine neurofilaments. Biochemistry 23(13):2866–2875CrossRefPubMedGoogle Scholar
  27. Muranova LK, Weeks SD, Strelkov SV, Gusev NB (2015) Characterization of mutants of human small heat shock protein HspB1 carrying replacements in the N-terminal domain and associated with hereditary motor neuron diseases. PLoS One 10(5):e0126248. doi: 10.1371/journal.pone.0126248 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 17(2):157–169. doi: 10.1007/s12192-011-0296-0 CrossRefPubMedGoogle Scholar
  29. Nakamura Y, Takeda M, Angelides KJ, Tanaka T, Tada K, Nishimura T (1990) Effect of phosphorylation on 68 kDa neurofilament subunit protein assembly by the cyclic AMP dependent protein kinase in vitro. Biochem Biophys Res Commun 169(2):744–750CrossRefPubMedGoogle Scholar
  30. Nefedova VV, Datskevich PN, Sudnitsyna MV, Strelkov SV, Gusev NB (2013a) Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies. Biochimie 95(8):1582–1592. doi: 10.1016/j.biochi.2013.04.014 CrossRefPubMedGoogle Scholar
  31. Nefedova VV, Sudnitsyna MV, Strelkov SV, Gusev NB (2013b) Structure and properties of G84R and L99M mutants of human small heat shock protein HspB1 correlating with motor neuropathy. Arch Biochem Biophys 538(1):16–24. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  32. Omary MB (2009) “IF-pathies”: a broad spectrum of intermediate filament-associated diseases. J Clin Invest 119(7):1756–1762. doi: 10.1172/JCI39894 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Perng MD, Cairns L, van den IP, Prescott A, Hutcheson AM, Quinlan RA (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112(Pt 13):2099–2112PubMedGoogle Scholar
  34. Perng MD, Wen SF, van den IP, Prescott AR, Quinlan RA (2004) Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 15(5):2335–2346. doi: 10.1091/mbc.E03-12-0893 CrossRefPubMedGoogle Scholar
  35. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78(3):1606–1619. doi: 10.1016/S0006-3495(00)76713-0 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Scott D, Smith KE, O'Brien BJ, Angelides KJ (1985) Characterization of mammalian neurofilament triplet proteins. Subunit stoichiometry and morphology of native and reconstituted filaments. J Biol Chem 260(19):10736–10747PubMedGoogle Scholar
  37. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234CrossRefPubMedGoogle Scholar
  38. Taylor RP, Benjamin IJ (2005) Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38(3):433–444. doi: 10.1016/j.yjmcc.2004.12.014 CrossRefPubMedGoogle Scholar
  39. Vos MJ, Kanon B, Kampinga HH (2009) HSPB7 is a SC35 speckle resident small heat shock protein. Biochim Biophys Acta 1793(8):1343–1353. doi: 10.1016/j.bbamcr.2009.05.005 CrossRefPubMedGoogle Scholar
  40. Yates DM, Manser C, De Vos KJ, Shaw CE, McLoughlin DM, Miller CC (2009) Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments. Eur J Cell Biol 88(4):193–202. doi: 10.1016/j.ejcb.2008.11.004 CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2016

Authors and Affiliations

  • Victoria V. Nefedova
    • 1
  • Maria V. Sudnitsyna
    • 1
  • Nikolai B. Gusev
    • 1
  1. 1.Department of Biochemistry, School of BiologyMoscow State UniversityMoscowRussian Federation

Personalised recommendations