Advertisement

Cell Stress and Chaperones

, Volume 22, Issue 4, pp 455–466 | Cite as

Oligomerization and chaperone-like activity of Drosophila melanogaster small heat shock protein DmHsp27 and three arginine mutants in the alpha-crystallin domain

  • Mohamed Taha Moutaoufik
  • Geneviève Morrow
  • Halim Maaroufi
  • Céline Férard
  • Stéphanie Finet
  • Robert M. Tanguay
SMALL HEAT SHOCK PROTEINS

Abstract

The small Hsp DmHsp27 from Drosophila melanogaster is one of the few small heat shock proteins (sHsps) found within the nucleus. We report that its dimerization is independent of disulfide bond formation and seems to rely on salt bridges. Unlike metazoan sHsps, DmHsp27 forms two populations of oligomers not in equilibrium. Mutations at highly conserved arginine residues in mammalian sHsps have been reported to be associated with protein conformational defects and intracellular aggregation. Independent mutation of three highly conserved arginines (R122, R131, and R135) to glycine in DmHsp27 results in only one population of higher molecular weight form. In vitro, the chaperone-like activity of wild-type DmHsp27 was comparable with that of its two isolated populations and to the single population of the R122G, R131G, and R135G using luciferase as substrate. However, using insulin, the chaperone-like activity of wild-type DmHsp27 was lower than that of R122G and R131G mutants. Altogether, the results characterize wild-type DmHsp27 and its alpha-crystallin domain (ACD) arginine mutants and may give insight into protection mechanism of sHsps.

Keywords

Small heat shock protein (sHsp) DmHsp27 Chaperone Alpha-crystallin domain (ACD) Drosophila melanogaster 

Notes

Acknowledgements

We would like to thank Jérémie Hamel from the Institute for Integrative Systems Biology (IBIS) for help with SEC, Fériel Skouri-Panet from the Institute of Mineralogy, Materials Physics and Cosmochemistry, and Ahmed Haouz from the crystallogenesis platform at the Pasteur Institute for technical help. This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to RMT. MTM held a studentship from PROTEO, Québec.

Supplementary material

12192_2016_748_Fig1_ESM.gif (4.3 mb)
ESM 1

(GIF 4427 kb).

12192_2016_748_MOESM1_ESM.tif (4.3 mb)
High resolution image (TIFF 4427 kb).

References

  1. Almeida-Souza L et al (2010) Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J Biol Chem 285:12778–12786. doi: 10.1074/jbc.M109.082644 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695:189–207. doi: 10.1016/j.bbamcr.2004.10.003 CrossRefPubMedGoogle Scholar
  3. Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392:1242–1252. doi: 10.1016/j.jmb.2009.07.069 CrossRefPubMedGoogle Scholar
  4. Baranova EV, Weeks SD, Beelen S, Bukach OV, Gusev NB, Strelkov SV (2011) Three-dimensional structure of alpha-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol 411:110–122. doi: 10.1016/j.jmb.2011.05.024 CrossRefPubMedGoogle Scholar
  5. Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117. doi: 10.1016/j.tibs.2011.11.005 CrossRefPubMedGoogle Scholar
  6. Beaulieu JF, Arrigo AP, Tanguay RM (1989) Interaction of Drosophila 27,000 Mr heat-shock protein with the nucleus of heat-shocked and ecdysone-stimulated culture cells. J Cell Sci 92(Pt 1):29–36PubMedGoogle Scholar
  7. Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO (2014) Neuropathy- and myopathy-associated mutations in human small heat shock proteins: characteristics and evolutionary history of the mutation sites. Mutat Res Rev Mutat Res. doi: 10.1016/j.mrrev.2014.02.004 PubMedPubMedCentralGoogle Scholar
  8. Bera S, Abraham EC (2002) The alphaA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with alphaB-crystallin. Biochemistry 41:297–305CrossRefPubMedGoogle Scholar
  9. Bera S, Thampi P, Cho WJ, Abraham EC (2002) A positive charge preservation at position 116 of alpha A-crystallin is critical for its structural and functional integrity. Biochemistry 41:12421–12426CrossRefPubMedGoogle Scholar
  10. Biasini M et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. doi: 10.1093/nar/gku340 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boncoraglio A, Minoia M, Carra S (2012) The family of mammalian small heat shock proteins (HSPBs): implications in protein deposit diseases and motor neuropathies. Int J Biochem Cell Biol 44:1657–1669. doi: 10.1016/j.biocel.2012.03.011 CrossRefPubMedGoogle Scholar
  12. Bova MP, Ding LL, Horwitz J, Fung BK (1997) Subunit exchange of alphaA-crystallin. J Biol Chem 272:29511–29517CrossRefPubMedGoogle Scholar
  13. Bova MP, Yaron O, Huang Q, Ding L, Haley DA, Stewart PL, Horwitz J (1999) Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc Natl Acad Sci U S A 96:6137–6142CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bova MP, Huang Q, Ding L, Horwitz J (2002) Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii. J Biol Chem 277:38468–38475. doi: 10.1074/jbc.M205594200 CrossRefPubMedGoogle Scholar
  15. Caspers GJ, Leunissen JA, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain”. J Mol Evol 40:238–248CrossRefPubMedGoogle Scholar
  16. Clark AR, Naylor CE, Bagneris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human alphaB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134. doi: 10.1016/j.jmb.2011.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cobb BA, Petrash JM (2000) Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts. Biochemistry 39:15791–15798CrossRefPubMedPubMedCentralGoogle Scholar
  18. de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 22:151–162CrossRefPubMedGoogle Scholar
  19. Datskevich PN, Nefedova VV, Sudnitsyna MV, Gusev NB (2012) Mutations of small heat shock proteins and human congenital diseases. Biochemistry (Mosc) 77:1500–1514. doi: 10.1134/S0006297912130081 CrossRefGoogle Scholar
  20. Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of alphaB crystallin. FEBS Lett 587:1073–1080. doi: 10.1016/j.febslet.2013.01.021 CrossRefPubMedGoogle Scholar
  21. Evgrafov OV et al (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36:602–606. doi: 10.1038/ng1354 CrossRefPubMedGoogle Scholar
  22. Fu X, Jiao W, Chang Z (2006) Phylogenetic and biochemical studies reveal a potential evolutionary origin of small heat shock proteins of animals from bacterial class. A J Mol Evol 62:257–266. doi: 10.1007/s00239-005-0076-5 CrossRefPubMedGoogle Scholar
  23. Gentil BJ, Cooper L (2012) Molecular basis of axonal dysfunction and traffic impairments in CMT. Brain Res Bull 88:444–453. doi: 10.1016/j.brainresbull.2012.05.003 CrossRefPubMedGoogle Scholar
  24. Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548. doi: 10.1016/j.jmb.2015.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heirbaut M, Beelen S, Strelkov SV, Weeks SD (2014) Dissecting the functional role of the N-terminal domain of the human small heat shock protein HSPB6. PLoS One 9:e105892. doi: 10.1371/journal.pone.0105892 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hochberg GK et al (2014) The structured core domain of alphaB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc Natl Acad Sci U S A 111:E1562–E1570. doi: 10.1073/pnas.1322673111 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Holmgren A (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254:9627–9632PubMedGoogle Scholar
  28. Inagaki N et al (2006) Alpha B-crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 342:379–386. doi: 10.1016/j.bbrc.2006.01.154 CrossRefPubMedGoogle Scholar
  29. Irobi J et al (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36:597–601. doi: 10.1038/ng1328 CrossRefPubMedGoogle Scholar
  30. Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24:3633–3642CrossRefPubMedGoogle Scholar
  31. Kumar LV, Ramakrishna T, Rao CM (1999) Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem 274:24137–24141CrossRefPubMedGoogle Scholar
  32. Laganowsky A et al (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043. doi: 10.1002/pro.380 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi: 10.1107/S0021889892009944 CrossRefGoogle Scholar
  34. Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7:471–474CrossRefPubMedGoogle Scholar
  35. Maaroufi H, Tanguay RM (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS One 8:e81207. doi: 10.1371/journal.pone.0081207
  36. Mani N, Bhandari S, Moreno R, Hu L, Prasad BV, Suguna K (2016) Multiple oligomeric structures of a bacterial small heat shock protein. Sci Rep 6:24019. doi: 10.1038/srep24019 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Michaud S, Morrow G, Marchand J, Tanguay RM (2002) Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol 28:79–101CrossRefPubMedGoogle Scholar
  38. Michaud S, Lavoie S, Guimond MO, Tanguay RM (2008) The nuclear localization of Drosophila Hsp27 is dependent on a monopartite arginine-rich NLS and is uncoupled from its association to nuclear speckles. Biochim Biophys Acta 1783:1200–1210. doi: 10.1016/j.bbamcr.2008.01.031 CrossRefPubMedGoogle Scholar
  39. Michiel M, Skouri-Panet F, Duprat E, Simon S, Ferard C, Tardieu A, Finet S (2009) Abnormal assemblies and subunit exchange of alphaB-crystallin R120 mutants could be associated with destabilization of the dimeric substructure. Biochemistry 48:442–453. doi: 10.1021/bi8014967 CrossRefPubMedGoogle Scholar
  40. Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278:31033–31042. doi: 10.1074/jbc.M303587200 CrossRefPubMedGoogle Scholar
  41. Morrow G, Tanguay RM (2015) Drosophila small heat shock proteins: an update on their features and functions. In: Tanguay RM, Hightower LE (eds) The big book on small heat shock proteins, vol 8. Heat shock proteins. Springer International Publishing, pp 579–606Google Scholar
  42. Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 17:157–169. doi: 10.1007/s12192-011-0296-0 CrossRefPubMedGoogle Scholar
  44. Nefedova VV, Datskevich PN, Sudnitsyna MV, Strelkov SV, Gusev NB (2013) Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies. Biochimie 95:1582–1592. doi: 10.1016/j.biochi.2013.04.014 CrossRefPubMedGoogle Scholar
  45. Rodrigues JP, Levitt M, Chopra G (2012) KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 40:W323–W328. doi: 10.1093/nar/gks376 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Simon S, Michiel M, Skouri-Panet F, Lechaire JP, Vicart P, Tardieu A (2007) Residue R120 is essential for the quaternary structure and functional integrity of human alphaB-crystallin. Biochemistry 46:9605–9614. doi: 10.1021/bi7003125 CrossRefPubMedGoogle Scholar
  47. Skouri-Panet F, Michiel M, Ferard C, Duprat E, Finet S (2012) Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Biochimie 94:975–984. doi: 10.1016/j.biochi.2011.12.018 CrossRefPubMedGoogle Scholar
  48. Stengel F et al (2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci U S A 107:2007–2012. doi: 10.1073/pnas.0910126107 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Treweek TM et al (2005) R120G alphaB-crystallin promotes the unfolding of reduced alpha-lactalbumin and is inherently unstable. FEBS J 272:711–724. doi: 10.1111/j.1742-4658.2004.04507.x CrossRefPubMedGoogle Scholar
  50. Van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156CrossRefPubMedGoogle Scholar
  51. Vicart P et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95. doi: 10.1038/1765 CrossRefPubMedGoogle Scholar
  52. Weeks SD, Drinker M, Loll PJ (2007) Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr Purif 53:40–50. doi: 10.1016/j.pep.2006.12.006 CrossRefPubMedGoogle Scholar
  53. Zavialov A, Benndorf R, Ehrnsperger M, Zav’yalov V, Dudich I, Buchner J, Gaestel M (1998) The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25. Int J Biol Macromol 22:163–173CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2016

Authors and Affiliations

  • Mohamed Taha Moutaoufik
    • 1
  • Geneviève Morrow
    • 1
  • Halim Maaroufi
    • 2
  • Céline Férard
    • 3
  • Stéphanie Finet
    • 3
  • Robert M. Tanguay
    • 1
  1. 1.Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, de biochimie médicale et de pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEOUniversité LavalQuébecCanada
  2. 2.Plate-forme de bio-informatique, Institut de biologie intégrative et des systèmes (IBIS)Université LavalQuébecCanada
  3. 3.IMPMC UMR7590, CNRS, UPMC Paris 6ParisFrance

Personalised recommendations