Skip to main content
Log in

The influence of oxidative stress and autophagy cross regulation on pregnancy outcome

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The generation of reactive oxygen species (ROS), a byproduct of aerobic energy metabolism, is maintained at physiological levels by the activity of antioxidant components. Insufficiently opposed ROS results in oxidative stress characterized by altered mitochondrial function, decreased protein activity, damage to nucleic acids, and induction of apoptosis. Elevated levels of inadequately opposed ROS induce autophagy, a major intracellular pathway that sequesters and removes damaged macromolecules and organelles. In early pregnancy, autophagy induction preserves trophoblast function in the low oxygen and nutrient placental environment. Inadequate regulation of the ROS-autophagy axis leads to abnormal autophagy activity and contributes to the development of preeclampsia and intrauterine growth restriction. ROS-autophagy interactions are altered at the end of gestation and participate in the initiation of parturition at term. The induction of high levels of ROS coupled with a failure to induce a corresponding increase in autophagy results in the triggering of preterm labor and delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelaziz DHA, Khalil H, Cormet-Boyaka E, Amer AO (2015) The cooperation between the autophagy machinery and the inflammasome to implement an appropriate innate immune response: do they regulate each other? Immunol Rev 265:194–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrawal V, Jaiswal MK, Mallers T, Katara GK, Gilman-Sachs A, Beaman KD et al (2015) Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci Rep 5:9410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluganti Narasimhulu C, Fernandez-Ruiz I, Selvarajan K, Jiang X, Sengupta B, Riad A et al (2016) Atherosclerosis—do we know enough already to prevent it? Curr Opin Pharmacol 27:92–102

    Article  CAS  PubMed  Google Scholar 

  • Anderson UD, Olsson MG, Kristensen KH, Akerstr€om B, Hansson SR (2012) Review: biochemical markers to predict preeclampsia. Placenta 33:S42–47

    Article  PubMed  Google Scholar 

  • Basaran A, Basaran M, Topatan B (2010) Combined vitamin C and E supplementation for the prevention of preeclampsia: a systematic review and meta-analysis. Obstet Gynecol Surv 65:653–667

    Article  PubMed  Google Scholar 

  • Basu J, Bendek B, Agamasu E, Salafia CM, Mishra A, Benfield N et al (2015) Placental oxidative status throughout normal gestation in women with uncomplicated pregnancies. Obstet Gynecol Int. doi:10.1155/2015/276095

    PubMed  PubMed Central  Google Scholar 

  • Beauséjour A, Bibeau K, Lavoie JC, St-Louis J, Brochu M (2007) Placental oxidative stress in a rat model of preeclampsia. Placenta 28:52–58

    Article  PubMed  Google Scholar 

  • Behnia F, Taylor BD, Woodson M, Kacerovsky M, Hawkins H, Fortunato SJ et al (2015) Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol. doi:10.1016/j.ajog.2015.05.041

    Google Scholar 

  • Behnia F, Sheller S, Menon R (2016) Mechanistic differences leading to infectious and sterile inflammation. Am J Reprod Immunol 75:505–518

    Article  CAS  PubMed  Google Scholar 

  • Bredeson S, Papaconstantinou J, Deford JH, Kechichian T, Syed TA, Saade GR et al (2014) HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One. doi:10.1371/journal.pone.0113799

    PubMed  PubMed Central  Google Scholar 

  • Brickle A, Tran HT, Lim R, Liong S, Lappas M (2015) Autophagy, which is decreased in labouring fetal membranes, regulates IL-1β production via the inflammasome. Placenta 36:1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Brodsky D, Christou H (2004) Current concepts in intrauterine growth restriction. J Intensive Care Med 19:307–319

    Article  PubMed  Google Scholar 

  • Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25:287–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Campisi J, Robert L (2014) Cell senescence: role in aging and age‐related diseases. Interdiscip Top Gerontol 39:45–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Hee SW, Hsieh ML, Jeng YM, Chuang LM (2015) The role of organelle stresses in diabetes mellitus and obesity: implication for treatment. Anal Cell Pathol (Amst). doi:10.1155/2015/972891

    Google Scholar 

  • Chen B, Longtine MS, Nelson DM (2012) Hypoxia induces autophagy in primary human trophoblasts. Endocrinology 153:4946–4954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis S, Jones CJ, Garrod A, Hulme CH, Heazell AE (2013) Identification of autophagic vacuoles and regulators of autophagy in villous trophoblast from normal term pregnancies and in fetal growth restriction. J Matern Fetal Neonatal Med 26:339–346

    Article  CAS  PubMed  Google Scholar 

  • Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S et al (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382

    Article  CAS  PubMed  Google Scholar 

  • Dokladny K, Zuhl MN, Mandell M, Bhattacharya D, Schneider S, Deretic V (2013) Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J Biol Chem 288:14959–14972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingueti CP, Dusse LM, Carvalho MD, de Sousa LP, Gomes KB, Fernandes AP (2015) Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 30:738–45

    Article  PubMed  Google Scholar 

  • Duley L (2009) The global impact of pre-eclampsia and eclampsia. Semin Perinatol 33:130–137

    Article  PubMed  Google Scholar 

  • Dutta EH, Behnia F, Boldogh I, Saade GR, Taylor BD, Kacerovský M et al (2016) Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod 22:143–157

    Article  PubMed  Google Scholar 

  • Edens BM, Miller N, Ma YC (2016) Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. Front Cell Neurosci 10:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Efimova O, Szankasi P, Kelley TW (2011) Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. PLoS One. doi:10.1371/journal.pone.0016013

    PubMed  PubMed Central  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaccioli F, Lager S (2016) Placental nutrient transport and intrauterine growth restriction. Front Physiol 7:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao L, Qi HB, Kamana KC, Zhang XM, Zhang H, Baker PN (2015) Excessive autophagy induces the failure of trophoblast invasion and vasculature: possible relevance to the pathogenesis of preeclampsia. J Hypertens 33:106–117

    Article  CAS  PubMed  Google Scholar 

  • Gawriluk TR, Rucker EB (2015) BECN1, corpus luteum function, and preterm labor. Autophagy 11:183–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghulmiyyah L, Sibai B (2012) Maternal mortality from preeclampsia/eclampsia. Semin Perinatol 36:56–59

    Article  PubMed  Google Scholar 

  • Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84

    Article  PubMed  Google Scholar 

  • Hernández JA, López-Sánchez RC, Rendón-Ramírez A (2016) Lipids and oxidative stress associated with ethanol-induced neurological damage. Oxidative Med Cell Longev. doi:10.1155/2016/1543809

    Google Scholar 

  • Hirota Y, Cha J, Yoshie M, Daikoku T, Dey SK (2011) Heightened uterine mammalian target of rapamycin complex 1 (mTORC1) signaling provokes preterm birth in mice. Proc Natl Acad Sci U S A 108:18073–18078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung TH, Burton GJ (2006) Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol 45:189–200

    Article  PubMed  Google Scholar 

  • Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT (2012) Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS One. doi:10.1371/journal.pone.0040957

    Google Scholar 

  • Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL (2013) Autophagy in the human placenta throughout gestation. PLoS One. doi:10.1371/journal.pone.0083475

    Google Scholar 

  • Jansson T, Aye IL, Goberdhan DC (2012) The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta. doi:10.1016/j.placenta.2012.05.010

    Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kanninen TT, Ramos BR, Jaffe S, Bongiovanni AM, Linhares IM, Di Renzo GC et al (2013a) Inhibition of autophagy by sera from pregnant women. Reprod Sci 20:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Kanninen TT, Ramos Ribeiro de Andrade B, Witkin SS (2013b) The role of autophagy in reproduction from gametogenesis to parturition. Eur J Obstet Gynecol Reprod Biol 171:3–8

    Article  CAS  PubMed  Google Scholar 

  • Kanninen TT, Jayaram A, Jaffe Lifshitz S, Witkin SS (2014) Altered autophagy induction by sera from pregnant women with pre-eclampsia: a case-control study. BJOG 121:958–964

    Article  CAS  PubMed  Google Scholar 

  • Kepp O, Galluzzi L, Kroemer G (2011) Mitochondrial control of the NLRP3 inflammasome. Nat Immunol 12:199–200

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Hong YC, Lee KH, Park HJ, Park EA, Moon HS et al (2005) Oxidative stress in pregnant women and birth weight reduction. Reprod Toxicol 19:487–492

    Article  CAS  PubMed  Google Scholar 

  • Lazdam M, Davis EF, Lewandowski AJ, Worton SA, Kenworthy Y, Kelly B et al (2012) Prevention of vascular dysfunction after preeclampsia: a potential long-term outcome measure and an emerging goal for treatment. J Pregnancy 2012:704146

    Article  PubMed  Google Scholar 

  • Longo S, Bollani L, Decembrino L, DiComite A, Angelini M, Stronati M (2013) Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med 26:222–225

    Article  CAS  PubMed  Google Scholar 

  • Lyall F (2002) The human placental bed revisited. Placenta 23:555–562

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve E, Delvin E, Ouellet A, Morin L, Dubé J, Boucoiran I et al (2014) Oxidative conditions prevail in severe IUGR with vascular disease and Doppler anomalies. J Matern Fetal Neonatal Med 15:1–5

    Google Scholar 

  • Menon R (2014) Oxidative stress damage as a detrimental factor in preterm birth pathology. Front Immunol 5:567

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon R, Boldogh I, Urrabaz-Garza R, Polettini J, Syed TA, Saade GR et al (2013) Senescence of primary amniotic cells via oxidative DNA damage. PLoS One. doi:10.1371/journal.pone.0083416

    Google Scholar 

  • Mert I, Oruc AS, Yuksel S, Cakar ES, Buyukkagnici U, Karaer A et al (2012) Role of oxidative stress in preeclampsia and intrauterine growth restriction. J Obstet Gynaecol Res 38:658–664

    Article  CAS  PubMed  Google Scholar 

  • Molvarec A, Szarka A, Walentin S, Szucs E, Nagy B, Rigó J Jr (2010) Circulating angiogenic factors determined by electrochemiluminescence immunoassay in relation to the clinical features and laboratory parameters in women with pre-eclampsia. Hypertens Res 33:892–898

    Article  CAS  PubMed  Google Scholar 

  • Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    Article  CAS  PubMed  Google Scholar 

  • Myatt L, Webster RP (2009) Vascular biology of preeclampsia. J Thromb Haemost 7:375–384

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Yamanaka-Tatematsu M, Fujita N, Koizumi K, Shima T, Yoshida T et al (2013) Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy 9:303–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nour N (2012) Preterm delivery and the millennium development goal. Rev Obstet Gynecol 5:100e5

    Google Scholar 

  • Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR (2008) Autophagy related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci 15:912–920

    Article  CAS  PubMed  Google Scholar 

  • Paamoni‐Keren O, Silberstein T, Burg A, Raz I, Mazor M, Saphier O et al (2007) Oxidative stress as determined by glutathione (GSH) concentrations in venous cord blood in elective cesarean delivery versus uncomplicated vaginal delivery. Arch Gynecol Obstet 276:43–46

    Article  PubMed  Google Scholar 

  • Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19:615–622

    Article  CAS  PubMed  Google Scholar 

  • Polettini J, Behnia F, Taylor BD, Saade GR, Taylor RN, Menon R (2015) Telomere fragment induced amnion cell senescence: a contributor to parturition? PLoS One. doi:10.1371/journal.pone.0137188

    PubMed  PubMed Central  Google Scholar 

  • Redman CW, Sargent IL (2010) Immunology of pre-eclampsia. Am J Reprod Immunol 63:534–543

    Article  CAS  PubMed  Google Scholar 

  • Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK (2006) Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med 11:317–326

    Article  PubMed  Google Scholar 

  • Romero R, Dey SK, Fisher SJ (2014) Preterm labor: one syndrome, many causes. Science 345:760–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero R, Xu Y, Plazyo O, Chaemsaithong P, Chaiworapongsa T, Unkel R et al (2016) A role for the inflammasome in spontaneous labor at term. Am J Reprod Immunol. doi:10.1111/aji.12440

    Google Scholar 

  • Saito S, Nakashima A (2014) A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol 101–102:80–88

    Article  PubMed  Google Scholar 

  • Salam RA, Das JK, Bhutta ZA (2014) Impact of intrauterine growth restriction on long-term health. Curr Opin Clin Nutr Metab Care 17:249–254

    Article  CAS  PubMed  Google Scholar 

  • Saleem T, Sajjad N, Fatima S, Habib N, Ali SR, Qadir M (2011) Intrauterine growth retardation-small events, big consequences. Ital J Pediatr 37:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Scifres CM, Nelson DM (2009) Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol 587:3453–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468:1100–1104

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  CAS  PubMed  Google Scholar 

  • Signorelli P, Avagliano L, Virgili E, Gagliostro V, Doi P, Braidotti P et al (2011) Autophagy in term normal human placentas. Placenta 32:482–485

    Article  CAS  PubMed  Google Scholar 

  • Sisti G, Kanninen TT, Ramer I, Witkin SS (2015) Interaction between the inducible 70-kDa heat shock protein and autophagy: effects on fertility and pregnancy. Cell Stress Chaperones 20:753–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisti G, Kanninen TT, Witkin SS (2016) Maternal immunity and pregnancy outcome: focus on preconception and autophagy. Genes Immun 17:1–7

    Article  CAS  PubMed  Google Scholar 

  • Smith GC, Fretts RC (2007) Stillbirth Lancet 370:1715–1725

    Article  PubMed  Google Scholar 

  • Szarka A, Rigó J Jr, Lázár L, Beko G, Molvarec A (2010) Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol 11:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai S, Hu XQ, Peng DQ, Zhou SH, Zheng XL (2016) The roles of autophagy in vascular smooth muscle cells. Int J Cardiol 211:1–6

    Article  PubMed  Google Scholar 

  • Thorne-Lyman AL, Fawzi WW (2012) Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: a systematic review and meta-analysis. Pediatr Perinat Epidemiol 26:36–54

    Article  Google Scholar 

  • Wu F, Tian FJ, Lin Y (2015a) Oxidative stress in placenta: health and diseases. Biomed Res Int. doi:10.1155/2015/293271

    Google Scholar 

  • Wu F, Tian FJ, Lin Y, Xu WM (2015b) Oxidative stress: placenta function and dysfunction. Am J Reprod Immunol. doi:10.1111/aji.12454

    PubMed Central  Google Scholar 

  • Zhang S, Regnault TR, Barker PL, Botting KJ, McMillen IC, McMillan CM et al (2015) Placental adaptations in growth restriction. Nutrients 7:360–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Ribeiro de Andrade Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade Ramos, B.R., Witkin, S.S. The influence of oxidative stress and autophagy cross regulation on pregnancy outcome. Cell Stress and Chaperones 21, 755–762 (2016). https://doi.org/10.1007/s12192-016-0715-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0715-3

Keywords

Navigation