Skip to main content
Log in

SeGSTo, a novel glutathione S-transferase from the beet armyworm (Spodoptera exigua), involved in detoxification and oxidative stress

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Members of the glutathione S-transferase superfamily can protect organisms against oxidative stress. In this study, we characterized an omega glutathione S-transferase from Spodoptera exigua (SeGSTo). The SeGSTo gene contains an open reading frame (ORF) of 744 nucleotides encoding a 248-amino acid polypeptide. The predicted molecular mass and isoelectric point of SeGSTo are 29007 Da and 7.74, respectively. Multiple amino acid sequence alignment analysis shows that the SeGSTo sequence is closely related to the class 4 GSTo of Bombyx mori BmGSTo4 (77 % protein sequence similarity). Homologous modeling and molecular docking reveal that Cys35 may play an essential role in the catalytic process. Additionally, the phylogenetic tree indicates that SeGSTo belongs to the omega group of the GST superfamily. During S. exigua development, SeGSTo is expressed in the midgut of the fifth instar larval stage, but not in the epidermis or fat body. Identification of recombinant SeGSTo via SDS-PAGE and Western blot shows that its molecular mass is 30 kDa. The recombinant SeGSTo was able to protect super-coiled DNA from damage in a metal-catalyzed oxidation (MCO) system and catalyze the 1-chloro-2,4-dinitrobenzene (CDNB), but not 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrophenethyl bromide (4-NPB), or 4-nitrobenzyl chloride (4-NBC). The optimal reaction pH and temperature were 8 and 50 °C, respectively, in the catalysis of CDNB by recombinant SeGSTo. The mRNA expression of SeGSTo was up-regulated by various oxidative stresses, such as CdCl2, CuSO4, and isoprocarb, and the catalytic activity of recombinant SeGSTo was noticeably inhibited by heavy metals (Cu2+ and Cd2+) and various pesticides. Taken together, these results indicate that SeGSTo plays an important role in the antioxidation and detoxification of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APRD (2016) Arthropod Pesticide Resistance Database, www.pesticideresistance.com (Date of access: 03 Nov 2016)

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Chelvanayagam G, Parker M, Board P (2001) Fly fishing for GSTs: a unified nomenclature for mammalian and insect glutathione transferases. Chem Biol Interact 133:256–260

    CAS  Google Scholar 

  • Corona M, Robinson GE (2006) Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol Biol 15:687–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Huang Y, Feng Q, Zheng S (2009) Two epsilon glutathione S-transferase cDNAs from the common cutworm, Spodoptera litura: characterization and developmental and induced expression by insecticides. J Insect Physiol 55:1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H (2003) The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14:3–8

    Article  CAS  PubMed  Google Scholar 

  • Gullipalli D, Arif A, Aparoy P, Svenson GJ, Whiting MF, Reddanna P, Dutta-Gupta A (2010) Identification of a developmentally and hormonally regulated Delta-Class glutathione S-transferase in rice moth Corcyra cephalonica. Comp Biochem Physiol B Biochem Mol Biol 156:33–39

    Article  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Lee KS, Choo YM, Yoon HJ, Lee SM, Lee JH, Kim DH, Sohn HD, Jin BR (2010) Molecular cloning and characterization of 1-Cys and 2-Cys peroxiredoxins from the bumblebee Bombus ignitus. Comp Biochem Physiol B Biochem Mol Biol 155:272–280

    Article  PubMed  Google Scholar 

  • Hu F, Dou W, Wang J, Jia F, Wang J (2014) Multiple glutathione S-transferase genes: identification and expression in oriental fruit fly, Bactrocera dorsalis. Pest Manag Sci 70:295–303

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xu Z, Lin X, Feng Q, Zheng S (2011) Structure and expression of glutathione S-transferase genes from the midgut of the common cutworm, Spodoptera litura (Noctuidae) and their response to xenobiotic compounds and bacteria. J Insect Physiol 57:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Lai T, Li J, Su J (2011) Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pestic Biochem Physiol 101:198–205

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Zhang J, Zhang X, Starkey SR, Zhu KY (2009) Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans (Diptera: Chironomidae). Insect Biochem Mol Biol 39:745–754

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Low WY, Feil SC, Ng HL, Gorman MA, Morton CJ, Pyke J, McConville MJ, Bieri M, Mok YF, Robin C, Gooley PR, Parker MW, Batterham P (2010) Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-transferase D1. J Mol Biol 399:358–366

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Yuan M, Gao X, Kang T, Zhan S, Wan H, Li J (2013) Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 8(7):e68059. doi:10.1371/journal.pone.0068059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara LA, Somboon P, Lycett G, Ranson H (2011) The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol 41:203–209

    Article  CAS  PubMed  Google Scholar 

  • Mannervik B, Cameron AD, Fernandez E, Gustafsson A, Hansson LO, Jemth P, Jiang F, Jones TA, Larsson AK, Nilsson LO, Olin B, Pettersson PL, Ridderström M, Stenberg G, Widersten M (1998) An evolutionary approach to the design of glutathione-linked enzymes. Chem Biol Interact 111(112):15–21

  • Pavlidi N, Tseliou V, Riga M, Nauen R, Leeuwen TV, Labrou NE, Vontas J (2015) Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. Pestic Biochem Physiol 121:53–60

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Jia M, Liu T, Zhang X, Guo Y, Zhu K, Ma E, Zhang J (2012) Heterologous expression and characterization of a sigma glutathione S-transferase involved in carbaryl detoxification from oriental migratory locust, Locusta- migratoria manilensis (Meyen). J Insect Physiol 58:220–227

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Jia M, Liu T, Zhang X, Guo Y, Zhu K, Ma E, Zhang J (2013) Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria. PLoS ONE 8:e58410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R (2002) Evolution of supergene families associated with insecticide resistance. Science 298:179–181

    Article  CAS  PubMed  Google Scholar 

  • Saranya Revathy K, Umasuthan N, Lee Y, Choi CY, Whang I, Lee J (2012) First molluscan theta-class glutathione S-transferase: identification, cloning, characterization and transcriptional analysis post immune challenges. Comp Biochem Physiol B Biochem Mol Biol 162:10–23

    Article  CAS  PubMed  Google Scholar 

  • Serafini MT, Romeu A (1991) Cu (II) and Cd (II) inhibition of rat liver glutathione S-transferase. A steady-state kinetic study. Biochem Int 24:497–505

    CAS  PubMed  Google Scholar 

  • Shi H, Pei L, Gu S, Zhu S, Wang Y, Zhang Y, Li B (2012) Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics 100:327–335

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Yuan M, You H, Li J, Jin BR (2012) Molecular cloning and characterization of a diapause-specific peptide in the beet armyworm, Spodoptera exigua. J Asia Pac Entomol 15:369–373

    Article  CAS  Google Scholar 

  • Wan H, Zhan S, Xia X, Xu P, You H, Jin BR, Li J (2015) Identification and functional characterization of an epsilon glutathione S-transferase from the beet armyworm (Spodoptera exigua). Pestic Biochem Physiol. doi:10.1016/j.pestbp.2015.09.009

    Google Scholar 

  • Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG (2005) Characterization of the omega class of glutathione transferases. Methods Enzymol 104:78–99

    Article  Google Scholar 

  • Yamamoto K, Zhang P, Miake, Kashige N, Aso Y, Banno Y, Fujii H (2005) Cloning, expression and characterization of theta-class glutathione S-transferase from the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 141:340–346

    Article  PubMed  Google Scholar 

  • Yamamoto K, Nagaoka S, Banno Y, Aso Y (2009) Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori. Comp Biochem Physiol C Toxicol Pharmacol 149:461–467

    Article  PubMed  Google Scholar 

  • Yamamoto K, Teshiba S, Shigeoka Y, Aso Y, Banno Y, Fujiki T, Katakura Y (2011) Characterization of an omega-class glutathione S-transferase in the stress response of the silkmoth. Insect Mol Biol 20:379–386

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Suzuki M, Higashiura A, Nakagawa A (2013) Three-dimensional structure of a Bombyx mori Omega-class glutathione transferase. Biochem Biophys Res Commun 438:588–593

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Jia H, Gao H, Guo X, Xu B (2013) Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana. Cell Stress Chaperones 18:415–426

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Lu C, Li B, Fang S, Zuo W, Dai F, Zhang Z, Xiang Z (2008) Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yan H, Lu W, Li Y, Guo X, Xu B (2013) A novel omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress. Cell Stress Chaperones 18:503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Fang S, Huang K, Yu Q, Zhang Z (2015) Characterization of an epsilon-class glutathione S-transferase involved in tolerance in the silkworm larvae after long term exposure to insecticides. Ecotoxicol Environ Saf 120:20–26

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Yuan M, Shakeel M, Zhang Y, Wang S, Wang X, Zhan S, Kang T, Li J (2014) Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). PLoS ONE 9(1):e84730. doi:10.1371/journal.pone.0084730

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu YC, Blanco CA, Portilla M, Adamczyk J, Luttrell R, Huang F (2015) Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pestic Biochem Physiol 122:15–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Fundamental Research Funds for the Central Universities (no. ZS81) and the National Natural Science Foundation of China (NSFC no. 31272069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Wan.

Ethics declarations

Conflict of interests

The authors have declared that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Han, N., Kang, T. et al. SeGSTo, a novel glutathione S-transferase from the beet armyworm (Spodoptera exigua), involved in detoxification and oxidative stress. Cell Stress and Chaperones 21, 805–816 (2016). https://doi.org/10.1007/s12192-016-0705-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0705-5

Keywords

Navigation