Advertisement

Cell Stress and Chaperones

, Volume 21, Issue 1, pp 131–137 | Cite as

CD1A-positive cells and HSP60 (HSPD1) levels in keratoacanthoma and squamous cell carcinoma

  • Daniela Cabibi
  • Everly Conway de Macario
  • Sabrina Ingrao
  • Rossana Porcasi
  • Francesco Zucco
  • Alberto J. L. Macario
  • Francesco Cappello
  • Francesca RappaEmail author
Original Paper

Abstract

CD1a is involved in presentation to the immune system of lipid antigen derived from tumor cells with subsequent T cell activation. Hsp60 is a molecular chaperone implicated in carcinogenesis by, for instance, modulating the immune reaction against the tumor. We have previously postulated a synergism between CD1a and Hsp60 as a key factor in the activation of an effective antitumor immune response in squamous epithelia. Keratoacantomas (KAs) are benign tumors that however can transform into squamous cell carcinomas (SCCs), but the reasons for this malignization are unknown. In a previous study, we found that CD1a-positive cells are significantly more numerous in KA than in SCC. In this study, we analyzed a series of KAs and SCCs by immunohistochemistry for CD1a and Hsp60. Our results show that the levels of both are significantly lower in KA than in SCC and support the hypothesis that KA may evolve towards SCC if there is a failure of the local modulation of the antitumor immune response. The data also show that immunohistochemistry for CD1a and Hsp60 can be of help in differential diagnosis between KAs and well-differentiated forms of SCC.

Keywords

Keratoacantoma Squamous cell carcinoma Hsp60 CD1a Immunohistochemistry Differential diagnosis Prognostic evaluation Treatment 

Notes

Acknowledgments

This work was done under the umbrella of the agreement between the Euro-Mediterranean Institute of Science and Technology (IEMEST; Italy) and the Institute of Marine and Environmental Technology (IMET; USA) signed in March 2012 (this is IMET contribution number 15-167).

Compliance with ethical standards

Founding sources

This work was partially supported by the Euro-Mediterranean Institute of Science and Technology (FC, FR and AJLM) and the University of Palermo (FC and DC). Part of this work was carried out using instruments provided by the Euro-Mediterranean Institute of Science and Technology and funded with the Italian National Operational Programme for Research and Competitiveness 2007–2013 grant (Project code: PONa3_00210, European Regional Development Fund).

Conflict of interest

The authors do not have any conflict of interest to disclose.

References

  1. Adam JK, Odhav B, Bhoola KD (2003) Immune responses in cancer. Pharmacol Therapeutics 99:113–132CrossRefGoogle Scholar
  2. Andrews DM, Andoniou CE, Scalzo AA, Dommelen SLH, Wallace ME, Smyth MJ, Degli-Esposti MA (2005) Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol 42:547–555CrossRefPubMedGoogle Scholar
  3. Bell D, Chomarat P, Broyles D, Netto G, Lebecque S, Valladeau J, Davoust J, Paluka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426PubMedCentralCrossRefPubMedGoogle Scholar
  4. Blessing K, al Nafussi A, Gordon PM (1994) The regressing keratoacanthoma. Histopathology 24:381–384CrossRefPubMedGoogle Scholar
  5. Brazzelli V, Barbagallo T, Prestinari F, Vassallo C, Agozzino M, Vailati F, Cespa M, Borroni G (2006) Keratoacanthoma in vitiligo lesion after UVB narrowband phototherapy. Photodermatol Photoimmunol Photomed 22:211–213CrossRefPubMedGoogle Scholar
  6. Cabibi D, Aragona F, Guarnotta C, Rodolico V, Zerilli M, Belmonte B, Schillaci L, Aragona F (2011) Glut-1 expression and in situ CD1a/CD57 immunologic deficit in keratoacanthoma and squamous cell carcinoma of immunocompetent patients. Appl Immunohistochem Mol Morphol 19:239–245CrossRefPubMedGoogle Scholar
  7. Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona DF, Barbieri G, David S, Farina F, Zummo G, Conway de Macario E, Macario AJL, Cappello F (2012) The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One 7, e42008PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cappello F, Zummo G (2005) HSP60 expression during carcinogenesis: a molecular “proteus” of carcinogenesis? Cell Stress Chaperones 10:263–264PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cappello F, Bellafiore M, Palma A, Marciano V, Martorana G, Belfiore P, Martorana A, Farina F, Zummo G, Bucchieri F (2002) Expression of 60-kD heat shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology 70:83–88CrossRefPubMedGoogle Scholar
  10. Cappello F, Bellafiore M, Palma A, David S, Marciano V, Bartolotta T, Sciume C, Modica G, Farina F, Zummo G, Bucchieri F (2003a) 60 kDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47:105–110CrossRefPubMedGoogle Scholar
  11. Cappello F, Rappa F, David S, Anzalone R, Zummo G (2003b) Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res 23:1325–1331PubMedGoogle Scholar
  12. Cappello F, David S, Rappa F, Bucchieri F, Marasà L, Bartolotta TE, Farina F, Zummo G (2005a) The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC Cancer 5:139PubMedCentralCrossRefPubMedGoogle Scholar
  13. Cappello F, Di Stefano A, D’Anna SE, Donner CF, Zummo G (2005b) Immunopositivity of heat shock protein 60 as a biomarker of bronchial carcinogenesis. Lancet Oncol 6:816CrossRefPubMedGoogle Scholar
  14. Cappello F, Di Stefano A, David S, Rappa F, Anzalone R, La Rocca G, D’Anna SE, Magno F, Donner CF, Balbi B, Zummo G (2006a) HSP60 and HSP10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive disease. Cancer 107:2417–2424CrossRefPubMedGoogle Scholar
  15. Cappello F, David S, Ardizzone N, Rappa F, Marasà L, Bucchieri F, Zummo G (2006b) Expression of Heat Shock Proteins Hsp10, Hsp27, Hsp60, Hsp70 and Hsp90 in urothelial carcinoma of urinary bladder. J Cancer Molec 2:73–77Google Scholar
  16. Cappello F, Angileri F, Conway de Macario E, Macario AJL (2013) Chaperonopathies and chaperonotherapy. Hsp60 as therapeutic target in cancer: potential benefits and risks. Curr Pharm Des 19:452–457CrossRefPubMedGoogle Scholar
  17. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat shock protein: a danger signal to the innate immune system. J Immunol 162:3212PubMedGoogle Scholar
  18. Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310CrossRefPubMedGoogle Scholar
  19. Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, Mor F, Carmi P, Zanin-Zhorov A, Lider O, Cohen IR (2005) Heat Shock Protein 60 Activates B Cells via the TLR4-MyD88 pathway. J Immunol 175:3594–3602CrossRefPubMedGoogle Scholar
  20. Corrao S, La Rocca G, Anzalone R, Farina F, Marasà L, Zummo G, Cappello F (2008) Role of CD1a and Hsp60 in the antitumoral response of oesophageal cancer. Oncol Rev 1:225–232CrossRefGoogle Scholar
  21. Coventry BJ, Heinzel S (2004) CD1a in human cancers: a new role for an old molecule. Trends Immunol 25:242–248CrossRefPubMedGoogle Scholar
  22. Craddock KJ, Rao J, Lauzon GJ, Tron VA (2004) Multiple keratoacanthomas arising post-UVB terapy. J Cutan Med Surg 8:239–243CrossRefPubMedGoogle Scholar
  23. Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116–128PubMedCentralCrossRefPubMedGoogle Scholar
  24. Dieu-Nosjean M-C, Massacrier C, Homey B, Vanbervliet B, Pin J-J, Vicari A, Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, Caux C (2000) Macrophage inflammatory protein 3α is expressed at inflamed epithelial surface and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192:705–717PubMedCentralCrossRefPubMedGoogle Scholar
  25. Dundas SR, Lawrie LC, Rooney P, Murray G (2004) Mortalin is overexpressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 205:74–81CrossRefGoogle Scholar
  26. Fernandez-Flores (2005) Apoptotic markers in the differential diagnosis of keratoacanthoma versus squamous cell carcinoma. Histopathology 50:275–287Google Scholar
  27. Flohé SB, Brüggermann J, Lendemans S, Nikulina M, Meierhoff G, Flohé S, Kolb H (2003) Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 170:2340–2348CrossRefPubMedGoogle Scholar
  28. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964CrossRefPubMedGoogle Scholar
  29. Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28:1–14CrossRefPubMedGoogle Scholar
  30. Hendricks WM, Sudden (1991) Appearance of multiple keratoacanthomas three weeks after thermal burns. Curtis 47:410Google Scholar
  31. Hillebrand EE, Neville AM, Coventry BJ (1999) Immunohistochemical localization of Cd1a-positive putative dendritic cells in human breast tumours. Br J Cancer 79:940–944CrossRefGoogle Scholar
  32. Ikeguchi M, Ikeda M, Tatebe S, Maeta M, Kaibara N (1998) Clinical significance of dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep 5:1185–1189PubMedGoogle Scholar
  33. Ito T, Kawabe R, Kurasono Y, Hara M, Kitamura H, Fujita K, Kanisawa M (1998) Expression of heat shock proteins in squamous cell carcinoma of the tongue: an immunohistochemical study. J Oral Pathol Med 27:18–22CrossRefPubMedGoogle Scholar
  34. Itoh H, Komatsuda A, Ohtani H, Wakui H, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamuda F (2002) Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydratation. Eur J Biochem 269:5931–5938CrossRefPubMedGoogle Scholar
  35. Jalili A, Makowiski M, Switaj T, Nowis D, Wilczynski GM, Wilczek E, Chorazy-Massalska M, Radzikowska A, Maslinski W, Bialy L, Sieron A, Adamek M, Basak G, Mroz P, Krasnodebski IW, Jakobisiak M, Golab J (2004) Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res 10:4498–4508CrossRefPubMedGoogle Scholar
  36. Jass JR (1986) Lymphocytic infiltration and survival in rectal cancer. J Clin Pathol 39:585–589PubMedCentralCrossRefPubMedGoogle Scholar
  37. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kaptanoglu AF, Kutluay L (2006) Keratoacanthoma developing in previous cryotherapy site for solar keratosis. J Eur Acad Dermatol Venereol 20:197–198CrossRefPubMedGoogle Scholar
  39. Kimyai-Asadi A, Shaffer C, Levine VJ, Jiih MH (2004) Keratoacanthoma arising from an exicisional surgery scar. J Drugs Dermatol 3:193–194PubMedGoogle Scholar
  40. Kluger N, Minier-Thoumin C, Plantier F (2008) Keratoacanthoma occurring within the red dye of a tattoo. J Cutan Pathol 35:504–507CrossRefPubMedGoogle Scholar
  41. La Rocca G, Anazalone R, Corrao S, Magno F, Rappa F, Marasà S, Czarnecka AM, Marasà L, Sergi C, Zummo G, Cappello F (2008) CD1a down-regulation in primary invasive ductal breast carcinoma may predict regional lymph node invasion and patient outcome. Histopathology 52:203–212CrossRefPubMedGoogle Scholar
  42. Lebret T, Watson RW, Molinié V, O’Neill A, Gabriel C, Fitzpatrick JM, Botto H (2003) Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer 98:970–977CrossRefPubMedGoogle Scholar
  43. Martin J (1997) Molecular chaperones and mitochondrial protein folding. J Bioenerg Biomembr 29:35–43CrossRefPubMedGoogle Scholar
  44. Maydan E, Nootheti PK, Goldman MP (2006) Development of a keratoacanthoma after topical photodynamic therapy with 5-aminolevulinic acid. J Drugs Dermatol 5:804–806PubMedGoogle Scholar
  45. Merendino AM, Bucchieri F, Campanella C, Marcianò V, Ribbene A, David S, Zummo G, Burgio G, Corona DF, Conway de Macario E, Macario AJL, Cappello F (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5, e9247PubMedCentralCrossRefPubMedGoogle Scholar
  46. Mukunyadzi P, Sanderson RD, Fan CY (2002) Smoller BR (2002) The level of syndecan-1 expression is a distinguishing feature in behavior between keratoacanthoma and invasive cutaneous squamous cell carcinoma. Mod Pathol 15:45–49CrossRefPubMedGoogle Scholar
  47. Osterloh A, Kalinke U, Weiss S, Fleisher B, Breloer M (2007) Synergistic and differetial modulation of immune responses by HSP60 and LPS. J Biol Chem 282:4669–4680CrossRefPubMedGoogle Scholar
  48. Pattee SF, Silvis NG (2003) Keratoacanthoma developing in sites of previous trauma: a report of two cases and review of the literature. J Am Acad Dermatol 48:S35–S38CrossRefPubMedGoogle Scholar
  49. Porcelli SA, Segelke BW, Sugita M, Wilson IA, Brenner MB (1998) The CD1 family of lipid antigen-presenting molecules. Immunol Today 19:362–368CrossRefPubMedGoogle Scholar
  50. Romanucci M, Malatesta D, Ciccarelli A, Bongiovanni L, Palmieri C, Borzacchiello G, Roperto F, Altamura G, Della Salda L (2012) Expression of heat shock proteins in premalignant and malignant urothelial lesions of bovine urinary bladder. Cell Stress Chaperones 17:683–692PubMedCentralCrossRefPubMedGoogle Scholar
  51. Sanchez YE, Simon P, Requena L, Ambrojo P, de Eusebio E (2000) Solitary Keratoacanthoma: a self-healing proliferation that frequently becomes malignant. Am J Dermatopathol 22:305–310CrossRefGoogle Scholar
  52. Sandel MH, Dadabayev AR, Manon AG, Morreau H, Melief CJ, Offringa R, van der Burg SH, Janssen-van Rhijn CM, Ensink NG, Tollenaar RA, van de Velde CJ, Kuppen PJ (2005) Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 11:2576–2582CrossRefPubMedGoogle Scholar
  53. Schwartz RA (2004) Keratoacanthoma: a clinico-pathologic enigma. Dermatol Surg 30:326–333PubMedGoogle Scholar
  54. Singh MP, Reddy MM, Mathur N, Saxena DK, Chowdhuri DK (2009) Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation. Toxicol Appl Pharmacol 235:226–243CrossRefPubMedGoogle Scholar
  55. Swaw JC, Storss FJ, Everts E (1990) Multiple keratoacanthomas after megavoltage radiation therapy. J Am Acad Dermatol 23:1009–1011CrossRefGoogle Scholar
  56. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquart I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C (2004) Dendritic cell infiltration and prognosis of early breast cancer. Clin Cancer Res 10:7466–7474CrossRefPubMedGoogle Scholar
  57. Tsan MF, Gao B (2004) Heat shock protein and innate immunity. Cell Mol Immunol 1:274–279PubMedGoogle Scholar
  58. Uppaluri R, Dunn GP, Lewis JS Jr (2008) Related articles, links focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun 8:16PubMedCentralPubMedGoogle Scholar
  59. Vincent MS, Xiong X, Grant EP, Peng W, Brenner MB (2005) CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. J Immunol 175:6344–6351CrossRefPubMedGoogle Scholar
  60. Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, Hirano T, Taira K, Kaul SC (2005) Identification and characterization of molecular interaction between mortalin/mt Hsp70 and HSP60. Bioch J 391:185–190CrossRefGoogle Scholar
  61. Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O (2003) T cells respond to heat shock protein 60 via TRL2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17:1567–1569PubMedGoogle Scholar
  62. Zanin-Zhorov A, Tal G, Shivtiel S, Cohen M, Lapidot T, Nussbaum MR, Cohen IR, Lider O (2005) Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol 175:276–285CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2015

Authors and Affiliations

  • Daniela Cabibi
    • 1
  • Everly Conway de Macario
    • 2
  • Sabrina Ingrao
    • 1
  • Rossana Porcasi
    • 1
  • Francesco Zucco
    • 1
  • Alberto J. L. Macario
    • 2
    • 3
  • Francesco Cappello
    • 3
    • 4
  • Francesca Rappa
    • 3
    • 4
    • 5
    Email author
  1. 1.Pathology Institute, Department “G. D’Alessandro”University of PalermoPalermoItaly
  2. 2.Department of Microbiology and Immunology, School of MedicineUniversity of Maryland at Baltimore and IMET, Columbus CenterBaltimoreUSA
  3. 3.Euro-Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
  4. 4.Department of Experimental Biomedicine and Clinical NeurosciencesUniversity of PalermoPalermoItaly
  5. 5.Department of Legal Science, Society and SportsUniversity of PalermoPalermoItaly

Personalised recommendations