Skip to main content
Log in

Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

An Erratum to this article was published on 20 October 2015

Abstract

A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω 66 homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akanksha (2012) Role of stress-inducible hsrω gene in development, and molecular genetic characterization of its novel interactor, DNA pol-ε, in Drosophila melanogaster. Ph. D. Thesis, Banaras Hindu University, Varanasi

    Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckendorf SK, Kafatos FC (1976) Differentiation in the salivary glands of Drosophila melanogaster: characterization of the glue proteins and their developmental appearance. Cell 9:365–373

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Bregman DB, Du L, van der Zee S, Warren SL (1995) Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol 129:287–298

    Article  CAS  PubMed  Google Scholar 

  • Cherbas L, Hu X, Zhimulev I, Belyaeva E, Cherbas P (2003) EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130:271–284

    Article  CAS  PubMed  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18:239–280

    Article  CAS  PubMed  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593–603

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Han M (2007) GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol 17:411–416

    Article  CAS  PubMed  Google Scholar 

  • Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H, Hultmark D (2001) A humoral stress response in Drosophila. Curr Biol 11:714–718

    Article  CAS  PubMed  Google Scholar 

  • Ellis MC, O'Neill EM, Rubin GM (1993) Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development 119:855–865

    CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Fini ME, Bendena WG, Pardue ML (1989) Unusual behavior of the cytoplasmic transcript of hsr omega: an abundant, stress-inducible RNA that is translated but yields no detectable protein product. J Cell Biol 108:2045–2057

    Article  CAS  PubMed  Google Scholar 

  • Giordano E, Rendina R, Peluso I, Furia M (2002) RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160:637–648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont M (1980) Two genes for the major heat-shock protein of Drosophila melanogaster arranged as an inverted repeat. Nucleic Acids Res 8:235–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong WJ, Golic KG (2006) Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172:275–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hogan NC, Slot F, Traverse KL, Garbe JC, Bendena WG, Pardue ML (1995) Stability of tandem repeats in the Drosophila melanogaster hsr-omega nuclear RNA. Genetics 139:1611–1621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson TK, Cockerell FE, McKechnie SW (2011) Transcripts from the Drosophila heat-shock gene hsr-omega influence rates of protein synthesis but hardly affect resistance to heat knockdown. Mol Genet Genomics 285:313–323

    Article  CAS  PubMed  Google Scholar 

  • Jolly C, Lakhotia SC (2006) Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 34:5508–5514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakhotia SC (1989) The 93D heat shock locus of Drosophila melanogaster: modulation by genetic and developmental factors. Genome 31:677–683

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC (2011) Forty years of the 93D puff of Drosophila melanogaster. J Biosci 36:399–423

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC (2012) Long non-coding RNAs coordinate cellular responses to stress. WIRES 3:779–796

    Article  CAS  Google Scholar 

  • Lakhotia SC, Mukherjee T (1982) Absence of novel translation products in relation to induced activity of the 93D puff in Drosophila melanogaster. Chromosoma 85:369–374

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC, Prasanth KV (2002) Tissue- and development-specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery in Drosophila melanogaster. J Exp Biol 205:345–358

    CAS  PubMed  Google Scholar 

  • Lakhotia SC, Singh AK (1989) A novel set of heat shock polypeptides in Malpighian tubules of Drosophila melanogaster. J Genet 68:129–137

    Article  CAS  Google Scholar 

  • Lakhotia SC, Singh BN (1996) Synthesis of a ubiquitously present new HSP60 family protein is enhanced by heat shock only in the Malpighian tubules of Drosophila. Experientia 52:751–756

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC, Tapadia MG (1998) Genetic mapping of the amide response element(s) of the hsr omega locus of Drosophila melanogaster. Chromosoma 107:127–135

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC, Ray P, Rajendra TK, Prasanth KV (1999) The noncoding transcripts of hsr-omega gene in Drosophila: do they regulate trafficking and availability of nuclear RNA-processing factors? Curr Sci 77:553–563

    CAS  Google Scholar 

  • Lakhotia SC, Rajendra TK, Prasanth KV (2001) Developmental regulation and complex organization of the promoter of the non-coding hsr(omega) gene of Drosophila melanogaster. J Biosci 26:25–38

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC, Srivastava P, Prasanth KV (2002) Regulation of heat shock proteins, Hsp70 and Hsp64, in heat-shocked Malpighian tubules of Drosophila melanogaster larvae. Cell Stress Chaperones 7:347–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakhotia SC, Mallik M, Singh AK, Ray M (2012) The large noncoding hsromega-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 121:49–70

    Article  CAS  PubMed  Google Scholar 

  • Lenzken SC, Achsel T (2014) Carrì MT and Barabino SML (2014) Neuronal RNA-binding proteins in health and disease. WIREs RNA. doi:10.1002/wrna.1231

    PubMed  Google Scholar 

  • Lin MD, Jiao X, Grima D, Newbury SF, Kiledjian M, Chou TB (2008) Drosophila processing bodies in oogenesis. Dev Biol 322:276–288

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Mallik M, Lakhotia SC (2009) RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol 6:464–478

    Article  CAS  PubMed  Google Scholar 

  • Mallik M, Lakhotia SC (2010) Improved activities of CREB binding protein, heterogeneous nuclear ribonucleoproteins and proteasome following downregulation of noncoding hsromega transcripts help suppress poly(Q) pathogenesis in fly models. Genetics 184:927–945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallik M, Lakhotia SC (2011) Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsromega gene in Drosophila. J Biosci 36:265–280

    Article  CAS  PubMed  Google Scholar 

  • Mohler J, Pardue ML (1982) Deficiency mapping of the 93D heat-shock locus in Drosophila melanogaster. Chromosoma 86:457–467

    Article  CAS  PubMed  Google Scholar 

  • Morcillo G, Diez JL, Carbajal ME, Tanguay RM (1993) HSP90 associates with specific heat shock puffs (hsr omega) in polytene chromosomes of Drosophila and Chironomus. Chromosoma 102:648–659

    Article  CAS  PubMed  Google Scholar 

  • Onorati MC, Lazzaro S, Mallik M, Ingrassia AM, Carreca AP, Singh AK, Chaturvedi DP, Lakhotia SC, Corona DF (2011) The ISWI chromatin remodeler organizes the hsromega ncRNA-containing omega speckle nuclear compartments. PLoS Genet 7, e1002096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palter KB, Watanabe M, Stinson L, Mahowald AP, Craig EA (1986) Expression and localization of Drosophila melanogaster Hsp7O cognate proteins. Mol Cell Biol 6:1187–1203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Place RF, Noonan EJ (2014) Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 19:159–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC (2000) Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 113:3485–3497

    CAS  PubMed  Google Scholar 

  • Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440:551–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ray M, Lakhotia SC (2015) The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster express in tissues other than eyes also. J Genet 39: doi:10.1007/s12041-015-0535-8

  • Roberts SP, Feder ME (1999) Natural hyperthermia and expression of the heat-shock protein Hsp70 affect development in Drosophila melanogaster. Oecologia 121:323–329

    Article  Google Scholar 

  • Sharma A, Lakhotia SC (1995) In situ quantification of hsp70 and alpha-beta transcripts at 87A and 87C loci in relation to hsr-omega gene activity in polytene cells of Drosophila melanogaster. Chromosome Res 3:386–393

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12:654–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silver JT, Noble EG (2012) Regulation of survival gene hsp70. Cell Stress Chaperones 17:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh BN, Lakhotia SC (1995) The non-induction of Hsp70 in heat shocked Malpighian tubules of Drosophila larvae is not due to constitutive presence of Hsp70 or Hsc70. Curr Sci 69:178–182

    CAS  Google Scholar 

  • Singh AK, Lakhotia SC (2000) Tissue-specific variations in the induction of Hsp70 and Hsp64 by heat shock in insects. Cell Stress Chaperones 5:90–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh AK, Lakhotia SC (2012) The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J Biosci 37:659–678

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Lakhotia SC (2015) Dynamics of hnRNPs and omega speckles in normal and heat shocked live cell nuclei of Drosophila melanogaster. Chromosoma. doi:10.1007/s00412-015-0506-0

    Google Scholar 

  • Stone DE, Craig EA (1990) Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol 10:1622–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Velazquez JM, Lindquist S (1984) hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36:655–662

    Article  CAS  PubMed  Google Scholar 

  • Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM (2015) Decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 41:109–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winegarden NA, Wong KS, Sopta M, Westwood JT (1996) Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp70 gene transcription in Drosophila. J Biol Chem 271:26971–26980

    Article  CAS  PubMed  Google Scholar 

  • Zatsepina OG, Velikodvorskaia VV, Molodtsov VB, Garbuz D, Lerman DN, Bettencourt BR, Feder ME, Evgenev MB (2001) A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. J Exp Biol 204:1869–1881

    CAS  PubMed  Google Scholar 

  • Zhang C, Ruvkun G (2012) New insights into siRNA amplification and RNAi. RNA Biol 9:1045–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao M, Tang D, Lechpammer S, Hoffman A, Asea A, Stevenson MA, Calderwood SK (2002) Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of Hsp70, and stabilization of are-containing hsp70 mRNA during stress. J Biol Chem 277:44539–44547. doi:10.1074/jbc.M208408200

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Wu X, Ginsberg HN (1996) Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells. J Biol Chem 271:24769–24775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. V. Prasanth (USA) for H5 antibody, Dr. R. M. Tanguay (Canada) for anti-Hsp90 antibody, and Dr. M. B. Evgen’ev (Russia) for 7Fb and 7.10.3 antibodies. Bloomington Stock Centre is acknowledged for providing various stocks used in present study. This work was supported by the CEIB-II grant from Department of Biotechnology, Govt. of India, and by the Board of Research in Nuclear Sciences (Department of Atomic Energy, Govt. of India) through Raja Ramanna Fellowship to SCL. We thank the Department of Science & Technology, Govt. of India (New Delhi), and the Banaras Hindu University for Confocal Microscopy facility in our laboratory. AKS has been supported as Senior Research Fellow by the Council of Scientific & Industrial Research (New Delhi) and as Research Associate by the Department of Biotechnology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Lakhotia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Lakhotia, S.C. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster . Cell Stress and Chaperones 21, 105–120 (2016). https://doi.org/10.1007/s12192-015-0644-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0644-6

Keywords

Navigation