Skip to main content
Log in

Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual’s performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. vol 105

  • Anderssen SA, Carroll S, Urdal P, Holme I (2007) Combined diet and exercise intervention reverses the metabolic syndrome in middle-aged males: results from the Oslo Diet and Exercise Study. Scand J Med Sci Sports 17:687–695. doi:10.1111/j.1600-0838.2006.00631.x

    Article  CAS  PubMed  Google Scholar 

  • Attaman JA, Stanic AK, Kim M, Lynch MP, Rueda BR, Styer AK (2014) The anti-inflammatory impact of omega-3 polyunsaturated fatty acids during the establishment of endometriosis-like lesions. Am J Reprod Immunol. doi:10.1111/aji.12276

    PubMed  Google Scholar 

  • Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012:982794. doi:10.1155/2012/982794

    Article  PubMed Central  PubMed  Google Scholar 

  • Barja G (2007) Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res 10:215–224. doi:10.1089/rej.2006.0516

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brieger K, Schiavone S, Miller FJ Jr, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659. doi:10.4414/smw.2012.13659

    CAS  PubMed  Google Scholar 

  • Bryner RW, Woodworth-Hobbs ME, Williamson DL, Alway SE (2012) Docosahexaenoic acid protects muscle cells from palmitate-induced atrophy. ISRN Obes 2012:647348. doi:10.5402/2012/647348

    PubMed Central  PubMed  Google Scholar 

  • Bucci LR (1993) A functional analytical technique for monitoring nutrient status and repletion. Am Clin Lab 12(8):10

    Google Scholar 

  • Das A, Plotkin SS (2013) SOD1 exhibits allosteric frustration to facilitate metal binding affinity. Proc Natl Acad Sci U S A 110(10):3871–3876. doi:10.1073/pnas.1216597110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    Article  CAS  PubMed  Google Scholar 

  • de Catalfo GE, de Alaniz MJ, Marra CA (2013) Dietary lipid-induced changes in enzymes of hepatic lipid metabolism. Nutrition 29:462–469. doi:10.1016/j.nut.2012.07.012

    Article  PubMed  Google Scholar 

  • Derogis PB et al (2013) The development of a specific and sensitive LC-MS-based method for the detection and quantification of hydroperoxy- and hydroxydocosahexaenoic acids as a tool for lipidomic analysis. PLoS One 8:e77561. doi:10.1371/journal.pone.0077561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filaire E et al (2010) Effect of 6 weeks of n-3 fatty-acid supplementation on oxidative stress in Judo athletes. Int J Sport Nutr Exerc Metab 20:496–506

    CAS  PubMed  Google Scholar 

  • Fink B, Laude K, McCann L, Doughan A, Harrison DG, Dikalov S (2004) Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay. Am J Physiol Cell Physiol 287:C895–C902. doi:10.1152/ajpcell.00028.2004

    Article  CAS  PubMed  Google Scholar 

  • Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    Article  CAS  PubMed  Google Scholar 

  • Garrel C, Alessandri JM, Guesnet P, Al-Gubory KH (2012) Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development. Int J Biochem Cell Biol 44:123–131. doi:10.1016/j.biocel.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  • Gil A (2002) Polyunsaturated fatty acids and inflammatory diseases Biomedicine & pharmacotherapy. Biomed Pharmacother 56:388–396

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford Univ. Press, Oxford

    Google Scholar 

  • Hernandez A, Cheng A, Westerblad H (2012) Antioxidants and skeletal muscle performance: "common knowledge" vs. experimental evidence. Front Physiol 3:46. doi:10.3389/fphys.2012.00046

    Article  PubMed Central  PubMed  Google Scholar 

  • Jackson MJ, Pye D, Palomero J (2007) The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 102:1664–1670. doi:10.1152/japplphysiol.01102.2006

    Article  CAS  PubMed  Google Scholar 

  • Kageyama A et al (2013) Palmitic acid induces osteoblastic differentiation in vascular smooth muscle cells through ACSL3 and NF-kappaB, novel targets of eicosapentaenoic acid. PLoS One 8:e68197. doi:10.1371/journal.pone.0068197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlsson J (1997) Exercise, muscle metabolism and the antioxidant defense. World Rev Nutr Diet 82:81–100

    Article  CAS  PubMed  Google Scholar 

  • Kelley DS, Adkins Y (2012) Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. Proc Nutr Soc 71:322–331. doi:10.1017/S0029665112000080

    Article  CAS  PubMed  Google Scholar 

  • Khan MW, Priyamvada S, Khan SA, Khan S, Naqshbandi A, Yusufi AN (2012) Protective effect of omega-3 polyunsaturated fatty acids (PUFAs) on sodium nitroprusside-induced nephrotoxicity and oxidative damage in rat kidney. Hum Exp Toxicol 31:1035–1049. doi:10.1177/0960327112444475

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Nakatomi R, Akagi T, Hashikawa T, Takahashi R (2005) Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants. J Biol Chem 280:21515–21521. doi:10.1074/jbc.M502230200

    Article  CAS  PubMed  Google Scholar 

  • Koren A, Sauber C, Sentjurc M, Schara M (1983) Free radicals in tetanic activity of isolated skeletal muscle. Comp Biochem Physiol B Comp Biochem 74:633–635

    Article  CAS  Google Scholar 

  • Kusunoki C et al (2013) Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun 430:225–230. doi:10.1016/j.bbrc.2012.10.115

    Article  CAS  PubMed  Google Scholar 

  • Kyrylenko O, Kukoba TV, Moibenko OO, Nikula TD (2004) [Effect of omega-3 polyunsaturated fatty acids of animal origin on changes in regulation of lipid peroxidation in patients with ischemic heart disease]. Lik Sprava/Ministerstvo okhorony zdorov'ia Ukrainy 71–73

  • Lambertucci RH, Hirabara SM, Silveira Ldos R, Levada-Pires AC, Curi R, Pithon-Curi TC (2008) Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J Cell Physiol 216:796–804. doi:10.1002/jcp.21463

    Article  CAS  PubMed  Google Scholar 

  • Lambertucci RH et al (2012) The effects of palmitic acid on nitric oxide production by rat skeletal muscle: mechanism via superoxide and iNOS activation. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 30:1169–1180. doi:10.1159/000343307

    Article  CAS  Google Scholar 

  • Lee MS, Kim IH, Kim Y (2013) Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C(2)C(12) muscle cells. Nutrients 5:1660–1671. doi:10.3390/nu5051660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loschen G, Azzi A, Richter C, Flohe L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS lett 42:68–72

    Article  CAS  PubMed  Google Scholar 

  • Martins C, Santos R, Gaya A, Twisk J, Ribeiro J, Mota J (2009) Cardiorespiratory fitness predicts later body mass index, but not other cardiovascular risk factors from childhood to adolescence. Am J Human Biol Off J Human Biol Counc 21:121–123. doi:10.1002/ajhb.20826

    Article  Google Scholar 

  • Mickleborough TD, Lindley MR, Montgomery GS (2008) Effect of fish oil-derived omega-3 polyunsaturated fatty acid supplementation on exercise-induced bronchoconstriction and immune function in athletes. Phys Sportsmed 36:11–17. doi:10.3810/psm.2008.12.7

    Article  PubMed  Google Scholar 

  • Naqshbandi A, Rizwan S, Khan MW, Khan F (2012) Dietary flaxseed oil supplementation ameliorates the effect of cisplatin on brush border membrane enzymes and antioxidant system in rat intestine. Hum Exp Toxicol. doi:10.1177/0960327112438929

    Google Scholar 

  • Nelson DLC, M. M. (2000) Lehninger principles of biochemistry, vol 3. Worth Publishers, New York.

  • Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS (2012) Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol 215:1615–1625. doi:10.1242/jeb.067470

    Article  CAS  PubMed  Google Scholar 

  • Pal M, Ghosh M (2012) Studies on comparative efficacy of alpha-linolenic acid and alpha-eleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 50:1066–1072. doi:10.1016/j.fct.2011.12.042

    Article  CAS  Google Scholar 

  • Pisani LF, Lecchi C, Invernizzi G, Sartorelli P, Savoini G, Ceciliani F (2009) In vitro modulatory effect of omega-3 polyunsaturated fatty acid (EPA and DHA) on phagocytosis and ROS production of goat neutrophils. Vet Immunol Immunopathol 131:79–85. doi:10.1016/j.vetimm.2009.03.018

    Article  CAS  PubMed  Google Scholar 

  • Ploug T, Stallknecht BM, Pedersen O, Kahn BB, Ohkuwa T, Vinten J, Galbo H (1990) Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol 259:E778–E786

    CAS  PubMed  Google Scholar 

  • Pogozheva AV, Martynova EA, Samsonov MA, Egorova NI, Ksenofontova EA, Gorozhanskaia EG (1994) [Dietary effects of PUFA omega-3 on lipid peroxidation and antioxidant system in patients with IHD, hyperlipoproteinemia and hypertension] Vopr Pitan 40–42

  • Priyanka HP, Bala P, Ankisettipalle S, ThyagaRajan S (2013) Bacopa monnieri and L-deprenyl differentially enhance the activities of antioxidant enzymes and the expression of tyrosine hydroxylase and nerve growth factor via ERK 1/2 and NF-kappaB pathways in the spleen of female wistar rats. Neurochem Res 38:141–152. doi:10.1007/s11064-012-0902-2

    Article  CAS  PubMed  Google Scholar 

  • Rossary A, Arab K, Steghens JP (2007) Polyunsaturated fatty acids modulate NOX 4 anion superoxide production in human fibroblasts. Biochem J 406:77–83. doi:10.1042/BJ20061009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russell FD, Burgin-Maunder CS (2012) Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar Drugs 10:2535–2559. doi:10.3390/md10112535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210

    Article  CAS  PubMed  Google Scholar 

  • Sebaldt RJ, Marignani P (1997) Diradylglycerol formation is altered by n-3 highly unsaturated fatty acids, with differences between eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Adv Exp Med Biol 400B:937–945

    CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker CG, Browning LM, Mander AP, Madden J, West AL, Calder PC, Jebb SA (2014) Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells and adipose tissue in humans. Br J Nutr 111:679–689. doi:10.1017/S0007114513002985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  • Woodman RJ, Mori TA, Burke V, Puddey IB, Barden A, Watts GF, Beilin LJ (2003) Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients. Atherosclerosis 166:85–93

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Meydani SN, Meydani M, Hayek MG, Huth P, Nicolosi RJ (1996) Immunologic effects of marine- and plant-derived n-3 polyunsaturated fatty acids in nonhuman primates. Am J Clin Nutr 63:273–280

    CAS  PubMed  Google Scholar 

  • Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Zuniga J et al (2011) N-3 PUFA supplementation triggers PPAR-alpha activation and PPAR-alpha/NF-kappaB interaction: anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS One 6:e28502. doi:10.1371/journal.pone.0028502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Financial support

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Lambertucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.P., Nachbar, R.T., Levada-Pires, A.C. et al. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells. Cell Stress and Chaperones 21, 87–95 (2016). https://doi.org/10.1007/s12192-015-0642-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0642-8

Keywords

Navigation