Skip to main content
Log in

Biochemical characterization of the interaction between HspA1A and phospholipids

Cell Stress and Chaperones Aims and scope Submit manuscript

Cite this article

Abstract

Seventy-kilodalton heat shock proteins (Hsp70s) are molecular chaperones essential for maintaining cellular homeostasis. Apart from their indispensable roles in protein homeostasis, specific Hsp70s localize at the plasma membrane and bind to specific lipids. The interaction of Hsp70s with lipids has direct physiological outcomes including lysosomal rescue, microautophagy, and promotion of cell apoptosis. Despite these essential functions, the Hsp70-lipid interactions remain largely uncharacterized. In this study, we characterized the interaction of HspA1A, an inducible Hsp70, with five phospholipids. We first used high concentrations of potassium and established that HspA1A embeds in membranes when bound to all anionic lipids tested. Furthermore, we found that protein insertion is enhanced by increasing the saturation level of the lipids. Next, we determined that the nucleotide-binding domain (NBD) of the protein binds to lipids quantitatively more than the substrate-binding domain (SBD). However, for all lipids tested, the full-length protein is necessary for embedding. We also used calcium and reaction buffers equilibrated at different pH values and determined that electrostatic interactions alone may not fully explain the association of HspA1A with lipids. We then determined that lipid binding is inhibited by nucleotide-binding, but it is unaffected by protein-substrate binding. These results suggest that the HspA1A lipid-association is specific, depends on the physicochemical properties of the lipid, and is mediated by multiple molecular forces. These mechanistic details of the Hsp70-lipid interactions establish a framework of possible physiological functions as they relate to chaperone regulation and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arakawa A, Handa N, Shirouzu M, Yokoyama S (2011) Biochemical and structural studies on the high affinity of Hsp70 for ADP. Protein Sci 20:1367–1379. doi:10.1002/pro.663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843. doi:10.1074/jbc.M005226200

    Article  CAS  PubMed  Google Scholar 

  • Arispe N, Doh M, De Maio A (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7:330–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arispe N, Doh M, Simakova O, Kurganov B, De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645

    Article  CAS  PubMed  Google Scholar 

  • Armijo G et al (2014) Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress Chaperones. doi:10.1007/s12192-014-0511-x

    PubMed Central  PubMed  Google Scholar 

  • Baenke F, Peck B, Miess H, Schulze A (2013) Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 6:1353–1363. doi:10.1242/dmm.011338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-Tal N, Honig B, Miller C, McLaughlin S (1997) Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J 73:1717–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606

    Article  CAS  PubMed  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  PubMed  Google Scholar 

  • Browne CL, Swan JB, Rankin EE, Calvert H, Griffiths S, Tytell M (2007) Extracellular heat shock protein 70 has novel functional effects on sea urchin eggs and coelomocytes. J Exp Biol 210:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum E, Woodman PG (1996) Binding of ATP and ATP analogues to the uncoating ATPase Hsc70 (70 kDa heat-shock cognate protein). Biochem J 318(Pt 3):923–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Bawa D, Besshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–529

    Article  CAS  PubMed  Google Scholar 

  • Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151. doi:10.1146/annurev.biophys.33.110502.133337

    Article  CAS  PubMed  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress Chaperones 16:235–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Maio A (2014) Extracellular Hsp70: export and function. Curr Protein Pept Sci 15:225–231

    Article  PubMed  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gehrmann M, Brunner M, Pfister K, Reichle A, Kremmer E, Multhoff G (2004) Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs. Clin Cancer Res 10:3354–3364

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann M et al (2008) Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gb3. PLoS ONE 3, e1925

    Article  PubMed Central  PubMed  Google Scholar 

  • Guidon PT Jr, Hightower LE (1986a) The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids. J Cell Physiol 128:239–245

    Article  CAS  PubMed  Google Scholar 

  • Guidon PT Jr, Hightower LE (1986b) Purification and initial characterization of the 71-kilodalton rat heat-shock protein and its cognate as fatty acid binding proteins. Biochemistry 25:3231–3239

    Article  CAS  PubMed  Google Scholar 

  • Hanshaw RG, Stahelin RV, Smith BD (2008) Noncovalent keystone interactions controlling biomembrane structure. Chemistry (Weinheim Bergstr Ger) 14:1690–1697

    CAS  Google Scholar 

  • Harada Y, Sato C, Kitajima K (2007) Complex formation of 70-kDa heat shock protein with acidic glycolipids and phospholipids. Biochem Biophys Res Commun 353:655–660

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Garenaux E, Nagatsuka T, Uzawa H, Nishida Y, Sato C, Kitajima K (2014) Interaction of 70-kDa heat shock protein with glycosaminoglycans and acidic glycopolymers. Biochem Biophys Res Commun 453:229–234. doi:10.1016/j.bbrc.2014.05.137

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Sato C, Kitajima K (2015) Sulfatide-Hsp70 interaction promotes Hsp70 clustering and stabilizes binding to unfolded protein. Biomolecules 5:958–973. doi:10.3390/biom5020958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28:1–14

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard T et al (2010) Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463:549–553

    Article  CAS  PubMed  Google Scholar 

  • Lancaster GI, Febbraio MA (2005a) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    Article  CAS  PubMed  Google Scholar 

  • Lancaster GI, Febbraio MA (2005b) Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev 11:46–52

    PubMed  Google Scholar 

  • Lancaster GI, Moller K, Nielsen B, Secher NH, Febbraio MA, Nybo L (2004) Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress Chaperones 9:276–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Mahalka AK, Kirkegaard T, Jukola LT, Jaattela M, Kinnunen PK (2014) Human heat shock protein 70 (Hsp70) as a peripheral membrane protein. Biochim Biophys Acta 1838:1344–1361. doi:10.1016/j.bbamem.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  • Malinverni D, Marsili S, Barducci A, De Los Rios P (2015) Large-Scale Conformational Transitions and Dimerization Are Encoded in the Amino-Acid Sequences of Hsp70 Chaperones. PLoS Comput Biol 11, e1004262. doi:10.1371/journal.pcbi.1004262

    Article  PubMed Central  PubMed  Google Scholar 

  • Mambula SS, Stevenson MA, Ogawa K, Calderwood SK (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43:168–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mamelak D, Lingwood C (2001) The ATPase domain of hsp70 possesses a unique binding specificity for 3'-sulfogalactolipids. J Biol Chem 276:449–456. doi:10.1074/jbc.M006732200

    Article  CAS  PubMed  Google Scholar 

  • Mamelak D et al (2001) Hsp70s contain a specific sulfogalactolipid binding site. Differential aglycone influence on sulfogalactosyl ceramide binding by recombinant prokaryotic and eukaryotic hsp70 family members. Biochemistry 40:3572–3582

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Yamada T, Kobayashi T, Kawai M (2015) Scanning tunneling microscope observation of the phosphatidylserine domains in the phosphatidylcholine monolayer. Langmuir 31:5449–5455. doi:10.1021/acs.langmuir.5b00859

    Article  CAS  PubMed  Google Scholar 

  • McCallister C, Siracusa MC, Shirazi F, Chalkia D, Nikolaidis N (2015) Functional diversification and specialization of cytosolic 70-kDa heat shock proteins. Sci Rep 5:9363. doi:10.1038/srep09363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Multhoff G (2007) Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 43:229–237

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Botzler C (1998) Heat-shock proteins and the immune response. Ann N Y Acad Sci 851:86–93

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Multhoff G, Botzler C, Issels R (1998) The role of heat shock proteins in the stimulation of an immune response. Biol Chem 379:295–300

    CAS  PubMed  Google Scholar 

  • Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39:122–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oddi S et al (2009) Molecular identification of albumin and Hsp70 as cytosolic anandamide-binding proteins. Chem Biol 16:624–632. doi:10.1016/j.chembiol.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  • Petersen NH, Kirkegaard T, Olsen OD, Jaattela M (2010) Connecting Hsp70, sphingolipid metabolism and lysosomal stability. Cell Cycle (Georgetown, Tex) 9(12):2305–2309

    Article  CAS  Google Scholar 

  • Sahu R et al (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schilling D et al (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23:2467–2477. doi:10.1096/fj.08-125229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15–27

    Article  CAS  PubMed  Google Scholar 

  • Takenaka IM, Leung SM, McAndrew SJ, Brown JP, Hightower LE (1995) Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J Biol Chem 270:19839–19844

    Article  CAS  PubMed  Google Scholar 

  • Thompson AD, Bernard SM, Skiniotis G, Gestwicki JE (2012) Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones 17:313–327. doi:10.1007/s12192-011-0307-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tytell M (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperth 21:445–455

    Article  CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Vega VL et al (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307

    Article  CAS  PubMed  Google Scholar 

  • Wang GH, Zhou XM, Bai Y, Yin XM, Yang LF, Zhao D (2011) Hsp70 binds to PrPC in the process of PrPC release via exosomes from THP-1 monocytes. Cell Biol Int 35:553–558. doi:10.1042/CBI20090391

    Article  CAS  PubMed  Google Scholar 

  • Whetstone H, Lingwood C (2003) 3'Sulfogalactolipid binding specifically inhibits Hsp70 ATPase activity in vitro. Biochemistry 42:1611–1617

    Article  CAS  PubMed  Google Scholar 

  • Yang JS et al (2008) A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10:1146–1153. doi:10.1038/ncb1774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol - Biochim Biol Cell 88:291–300

    Article  CAS  Google Scholar 

  • Zhuravleva A, Gierasch LM (2011) Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc Natl Acad Sci U S A 108:6987–6992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by start-up funds from California State University, Fullerton, a California State Mini Grant, and a grant from CSU Program for Education and Research in Biotechnology to NN. CM was supported by a Howard Hughes Medical Institute Scholarship. BK was supported by the Research Careers Preparatory Program at CSUF. The authors thank Dr. Dimitra Chalkia and Kyle Hess for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas Nikolaidis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 323 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCallister, C., Kdeiss, B. & Nikolaidis, N. Biochemical characterization of the interaction between HspA1A and phospholipids. Cell Stress and Chaperones 21, 41–53 (2016). https://doi.org/10.1007/s12192-015-0636-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0636-6

Keywords

Navigation