Skip to main content
Log in

Selenoproteins and heat shock proteins play important roles in immunosuppression in the bursa of Fabricius of chickens with selenium deficiency

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Selenium (Se) is necessary for the immune system in chicken and mediates its physiological functions through selenoproteins. Heat shock proteins (Hsps) are indispensable for maintaining normal cell function and for directing the immune response. The aim of the present study was to investigate the effects of Se deficiency on the messenger ribonucleic acid (mRNA) expression levels of selenoproteins and Hsps as well as immune functions in the chicken bursa of Fabricius. Two groups of chickens, namely the control and Se-deficient (L group) groups, were reared for 55 days. The chickens were offered a basal diet, which contained 0.15 mg Se/kg in the diet fed to the control group and 0.033 mg Se/kg in the diet fed to the L group. We performed real-time quantitative polymerase chain reactionto detect the mRNA expression levels of selenoproteins and Hsps on days 15, 25, 35, 45 and 55. Western blotting was used to determine the protein expression levels of Hsps on days 35, 45 and 55, and immune functions were assessed through an enzyme-linked immunosorbent assay on days 15, 35, and 55. The data showed that the mRNA expression levels of selenoproteins, such as Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, GPx1, GPx2, GPx3 GPx4, Sepp1, Selo, Sel-15, Sepx1, Sels, Seli, Selu, Selh, and SPS2, were significantly lower (P < 0.05) in the L group compared with the control group. Additionally, the mRNA and protein expression levels of Hsps (Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90) were also significantly higher (P < 0.05) in the L group. The expression levels of IL-2, IL-6, IL-8, IL-10, IL-17, IL-1β, IFN-α, IFN-β, and IFN-γ were significantly lower (P < 0.05) and TNF-α was significantly higher (P < 0.05) in the L group compared with the control group. Our results show that immunosuppression was accompanied by a downregulation of mRNA expression levels of selenoproteins and an upregulation of the Hsp mRNA expression levels. Thus, Se deficiency causes defects in the chicken bursa of Fabricius, and selenoproteins and Hsps play important roles in immunosuppression in the bursa of Fabricius of chickens with Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Aqil A, Zulkifli I (2009) Changes in heat shock protein 70 expression and blood characteristics in transported broiler chickens as affected by housing and early age feed restriction. Poult Sci 88:1358–1364

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ausiello CM, Palazzo R, Spensieri F et al (2005) 60-kDa heat shock protein of Chlamydia pneumoniae is a target of T-cell immune response. J Biol Regul Homeost Agents 19:136–140

    CAS  PubMed  Google Scholar 

  • Bellinger FP, Raman AV, Reeves MA et al (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berndt A, Wilhelm A, Jugert C et al (2007) Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect Immun 75:5993–6007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Banning A, Kny M et al (2004) Redox events in interleukin-1 signaling. Arch Biochem Biophys 423:66–73

    Article  CAS  PubMed  Google Scholar 

  • Broome CS, McArdle F, Kyle JA et al (2004) An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 80:154–162

    CAS  PubMed  Google Scholar 

  • Chang Y, Piao SL, Gao S et al (2005) Regulatory effects of micronutrient complex on the expression of Th1 and Th2 cytokines in diabetic C57BL mice. Wei Sheng Yan Jiu 34:64–66

    PubMed  Google Scholar 

  • Cheeseman JH, Levy NA, Kaiser P et al (2008) Salmonella Enteritidis-induced alteration of inflammatory CXCL chemokine messenger-RNA expression and histologic changes in the ceca of infected chicks. Avian Dis 52:229–234

    Article  PubMed  Google Scholar 

  • Chen X, Yao H, Yao L et al (2014) Selenium deficiency influences the gene expressions of heat shock proteins and nitric oxide levels in neutrophils of broilers. Biol Trace Elem Res 161:334–340

    Article  CAS  PubMed  Google Scholar 

  • Cooper MD, Raymond DA, Peterson RD et al (1966) The functions of the thymus system and the bursa system in the chicken. J Exp Med 123:75–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curtis MM, Way SS (2009) Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 126:177–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demirci S, Kutluhan S, Naziroglu M et al (2013) Effects of selenium and topiramate on cytosolic Ca(2+) influx and oxidative stress in neuronal PC12 cells. Neurochem Res 38:90–97

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  • Du S, Liu H, Huang K (2010a) Influence of SelS gene silence on beta-Mercaptoethanol-mediated endoplasmic reticulum stress and cell apoptosis in HepG2 cells. Biochim Biophys Acta 1800:511–517

    Article  CAS  PubMed  Google Scholar 

  • Du S, Zhou J, Jia Y et al (2010b) SelK is a novel ER stress-regulated protein and protects HepG2 cells from ER stress agent-induced apoptosis. Arch Biochem Biophys 502:137–143

    Article  CAS  PubMed  Google Scholar 

  • Fleshner M, Nguyen KT, Cotter CS et al (1998) Acute stressor exposure both suppresses acquired immunity and potentiates innate immunity. Am J Physiol 275:R870–878

    CAS  PubMed  Google Scholar 

  • Ghazi Harsini S, Habibiyan M, Moeini MM et al (2012) Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biol Trace Elem Res 148:322–330

    Article  CAS  PubMed  Google Scholar 

  • Guay J, Lambert H, Gingras-Breton G et al (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110(Pt 3):357–368

    CAS  PubMed  Google Scholar 

  • Guo S, Wharton W, Moseley P et al (2007) Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 12:245–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Habich C, Burkart V (2007) Heat shock protein 60: regulatory role on innate immune cells. Cell Mol Life Sci 64:742–751

    Article  CAS  PubMed  Google Scholar 

  • Hill KE, Lyons PR, Burk RF (1992) Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem Biophys Res Commun 185:260–263

    Article  CAS  PubMed  Google Scholar 

  • Hill KE, McCollum GW, Boeglin ME et al (1997) Thioredoxin reductase activity is decreased by selenium deficiency. Biochem Biophys Res Commun 234:293–295

    Article  CAS  PubMed  Google Scholar 

  • Hino M, Kurogi K, Okubo MA et al (2000) Small heat shock protein 27 (HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res Commun 271:164–169

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann PR (2007) Mechanisms by which selenium influences immune responses. Arch Immunol Ther Exp (Warsz) 55:289–297

    Article  CAS  Google Scholar 

  • Hong YH, Lillehoj HS, Lee SH et al (2006) Analysis of chicken cytokine and chemokine gene expression following Eimeria acervulina and Eimeria tenella infections. Vet Immunol Immunopathol 114:209–223

    Article  CAS  PubMed  Google Scholar 

  • Horai R, Saijo S, Tanioka H et al (2000) Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 191:313–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang JQ, Li DL, Zhao H et al (2011) The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common Selenoprotein genes in liver and muscle. J Nutr 141:1605–1610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaushal N, Bansal MP (2009) Diminished reproductive potential of male mice in response to selenium-induced oxidative stress: involvement of HSP70, HSP70-2, and MSJ-1. J Biochem Mol Toxicol 23:125–136

    Article  CAS  PubMed  Google Scholar 

  • Kiremidjian-Schumacher L, Roy M (1998) Selenium and immune function. Z Ernahrungswiss 37(Suppl 1):50–56

    CAS  PubMed  Google Scholar 

  • Koelkebeck KW, Odom TW (1995) Laying hen responses to acute heat stress and carbon dioxide supplementation: II. Changes in plasma enzymes, metabolites and electrolytes. Comp Biochem Physiol A Physiol 112:119–122

    Article  CAS  PubMed  Google Scholar 

  • Kohrle J, Jakob F, Contempre B et al (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  CAS  PubMed  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV et al (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Kim BS, Wu CC et al (2014) Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with infectious bursal disease virus. Arch Virol 160:69–80

    Article  PubMed  Google Scholar 

  • Lei C, Niu X, Ma X et al (2011) Is selenium deficiency really the cause of Keshan disease? Environ Geochem Health 33:183–188

    Article  CAS  PubMed  Google Scholar 

  • Lescure A, Rederstorff M, Krol A et al (2009) Selenoprotein function and muscle disease. Biochim Biophys Acta 1790:1569–1574

    Article  CAS  PubMed  Google Scholar 

  • Li J, Qian X, Sha B (2009) Heat shock protein 40: structural studies and their functional implications. Protein Pept Lett 16:606–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang Y, Lin SL, Wang CW et al (2014) Effect of selenium on selenoprotein expression in the adipose tissue of chickens. Biol Trace Elem Res 160:41–48

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Kim SC, Wang Y et al (2007) HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:H2238–2247

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Wang CW, Tan SR et al (2014) Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biol Trace Elem Res 161:263–271

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li M, Cao Y et al (2014a) Effects of avermectin on immune function and oxidative stress in the pigeon spleen. Chem Biol Interact 210:43–50

    Article  CAS  PubMed  Google Scholar 

  • Liu CP, Fu J, Lin SL et al (2014b) Effects of dietary selenium deficiency on mRNA levels of twenty-one selenoprotein genes in the liver of layer chicken. Biol Trace Elem Res 159:192–198

    Article  CAS  PubMed  Google Scholar 

  • Liu LL, He JH, Xie HB et al (2014c) Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult Sci 93:54–62

    Article  CAS  PubMed  Google Scholar 

  • Liu CP, Fu J, Xu FP et al (2015) The role of heat shock proteins in oxidative stress damage induced by Se deficiency in chicken livers. Biometals 28:163–173

    Article  CAS  PubMed  Google Scholar 

  • Maloy KJ (2008) The Interleukin-23/Interleukin-17 axis in intestinal inflammation. J Intern Med 263:584–590

    Article  CAS  PubMed  Google Scholar 

  • Mariotti M, Ridge PG, Zhang Y et al (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7

  • Musial K, Zwolinska D (2012) Hsp27 as a marker of cell damage in children on chronic dialysis. Cell Stress Chaperones 17:675–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura M, Manser T, Pearson GD et al (1984) Effect of IFN-gamma on the immune response in vivo and on gene expression in vitro. Nature 307:381–382

    Article  CAS  PubMed  Google Scholar 

  • Novoselov SV, Kryukov GV, Xu XM et al (2007) Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem 282:11960–11968

    Article  CAS  PubMed  Google Scholar 

  • Pappas AC, Zoidis E, Surai PF et al (2008) Selenoproteins and maternal nutrition. Comp Biochem Physiol B Biochem Mol Biol 151:361–372

    Article  CAS  PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Patrick L (1999) Nutrients and HIV: part one—beta carotene and selenium. Altern Med Rev 4:403–413

    CAS  PubMed  Google Scholar 

  • Peng X, Cui Y, Cui W et al (2011) The cell cycle arrest and apoptosis of bursa of Fabricius induced by low selenium in chickens. Biol Trace Elem Res 139:32–40

    Article  CAS  PubMed  Google Scholar 

  • Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66:2457–2478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy M, Kiremidjian-Schumacher L, Wishe HI et al (1995) Supplementation with selenium restores age-related decline in immune cell function. Proc Soc Exp Biol Med 209:369–375

    Article  CAS  PubMed  Google Scholar 

  • Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S et al (2012) Chronic cold stress in mice induces a regulatory phenotype in macrophages: correlation with increased 11beta-hydroxysteroid dehydrogenase expression. Brain Behav Immun 26:50–60

    Article  CAS  PubMed  Google Scholar 

  • Shaughnessy RG, Meade KG, Cahalane S et al (2009) Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet Immunol Immunopathol 132:191–198

    Article  CAS  PubMed  Google Scholar 

  • Stadtman TC (2000) Selenium biochemistry. Mammalian selenoenzymes. Ann N Y Acad Sci 899:399–402

    Article  CAS  PubMed  Google Scholar 

  • Sunde RA, Raines AM, Barnes KM et al (2009) Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 29:329–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terme M, Ullrich E, Delahaye NF et al (2008) Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol 9:486–494

    Article  CAS  PubMed  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    Article  CAS  PubMed  Google Scholar 

  • Van Eden W, Wick G, Albani S et al (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237

    Article  PubMed  Google Scholar 

  • Wang Y, Chen L, Hagiwara N et al (2010) Regulation of heat shock protein 60 and 72 expression in the failing heart. J Mol Cell Cardiol 48:360–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson CL, Mann J, Walsh M et al (2014) Quiescent hepatic stellate cells functionally contribute to the hepatic innate immune response via TLR3. PLoS One 9

  • Wu Y, Pei Y, Qin Y (2011) Developmental expression of heat shock proteins 60, 70, 90, and A2 in rabbit testis. Cell Tissue Res 344:355–363

    Article  CAS  PubMed  Google Scholar 

  • Wuyts A, Proost P, Lenaerts JP et al (1998) Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur J Biochem 255:67–73

    Article  CAS  PubMed  Google Scholar 

  • Xu SW, Yao HD, Zhang J et al (2013) The oxidative damage and disbalance of calcium homeostasis in brain of chicken induced by selenium deficiency. Biol Trace Elem Res 151:225–233

    Article  CAS  PubMed  Google Scholar 

  • Yao HD, Wu Q, Zhang ZW et al (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J Nutr 143:613–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • You L, Liu C, Yang ZJ et al (2014) Prediction of selenoprotein T structure and its response to selenium deficiency in chicken immune organs. Biol Trace Elem Res 160:222–231

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Bao E, Yan J et al (2008) Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress Chaperones 13:327–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang A, Zhou X, Wang X et al (2011) Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comp Biochem Physiol B Biochem Mol Biol 159:109–114

    Article  PubMed  Google Scholar 

  • Zhang ZW, Wang QH, Zhang JL et al (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149:352–361

    Article  CAS  PubMed  Google Scholar 

  • Zhao FQ, Zhang ZW, Wang C et al (2013a) The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones 18:773–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao FQ, Zhang ZW, Yao HD et al (2013b) Effects of cold stress on mRNA expression of immunoglobulin and cytokine in the small intestine of broilers. Res Vet Sci 95:146–155

    Article  CAS  PubMed  Google Scholar 

  • Zhao FQ, Zhang ZW, Qu JP et al (2014a) Cold stress induces antioxidants and Hsps in chicken immune organs. Cell Stress Chaperones 19:635–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao X, Yao H, Fan R et al (2014b) Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biol Trace Elem Res 161:341–349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the Veterinary Internal Medicine Laboratory, College of Veterinary Medicine, Northeast Agriculture University for their help with chicken bursa of Fabricius sample collection.

Funding

This study was supported by National Natural Science Foundation of China (Grant No. 31472161).

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoso, P.A., Yang, Z., Liu, C. et al. Selenoproteins and heat shock proteins play important roles in immunosuppression in the bursa of Fabricius of chickens with selenium deficiency. Cell Stress and Chaperones 20, 967–978 (2015). https://doi.org/10.1007/s12192-015-0625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0625-9

Keywords

Navigation