Skip to main content
Log in

Imaging stress

  • Perspective and Reflection Article
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Recent innovations in cell biology and imaging approaches are changing the way we study cellular stress, protein misfolding, and aggregation. Studies have begun to show that stress responses are even more variegated and dynamic than previously thought, encompassing nano-scale reorganization of cytosolic machinery that occurs almost instantaneously, much faster than transcriptional responses. Moreover, protein and mRNA quality control is often organized into highly dynamic macromolecular assemblies, or dynamic droplets, which could easily be mistaken for dysfunctional “aggregates,” but which are, in fact, regulated functional compartments. The nano-scale architecture of stress-response ranges from diffraction-limited structures like stress granules, P-bodies, and stress foci to slightly larger quality control inclusions like juxta nuclear quality control compartment (JUNQ) and insoluble protein deposit compartment (IPOD), as well as others. Examining the biochemical and physical properties of these dynamic structures necessitates live cell imaging at high spatial and temporal resolution, and techniques to make quantitative measurements with respect to movement, localization, and mobility. Hence, it is important to note some of the most recent observations, while casting an eye towards new imaging approaches that offer the possibility of collecting entirely new kinds of data from living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberti S (2012) Molecular mechanisms of spatial protein quality control. Prion 6(5):437–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amen T, Kaganovich D (2014) Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease. Cell Mol Life Sci 72(3):401–415

    Article  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115(16):3227–3234

    CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8(9):663–672

    Article  CAS  PubMed  Google Scholar 

  • Bashkirov VI et al (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136(4):761–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boisvert F-M et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585

    Article  CAS  PubMed  Google Scholar 

  • Brangwynne CP (2013) Phase transitions and size scaling of membrane-less organelles. J Cell Biol 203(6):875–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brangwynne CP et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732

    Article  CAS  PubMed  Google Scholar 

  • Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200(6):839–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brock KP et al. (2015) Structural basis for modulation of quality control fate in a marginally stable protein. Structure

  • Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36(6):932–941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchan JR et al (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153(7):1461–1474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cherkasov V et al (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 23(24):2452–2462

    Article  CAS  PubMed  Google Scholar 

  • Couthouis J et al (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci 108(52):20881–20890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Decker M et al (2011) Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr Biol 21(15):1259–1267

    Article  CAS  PubMed  Google Scholar 

  • Digman MA et al (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eddy EM (1976) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280

    Article  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597–604

    Article  CAS  PubMed  Google Scholar 

  • Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13(1):1–27

    Article  CAS  Google Scholar 

  • England JL, Kaganovich D (2011) Polyglutamine shows a urea-like affinity for unfolded cytosolic protein. FEBS Lett 585(2):381–384

    Article  CAS  PubMed  Google Scholar 

  • Escusa-Toret S, Vonk WIM, Frydman J (2013) Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat Cell Biol 15(10):1231–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filonov GS et al (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29(8):757–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gall JG (2003) The centennial of the Cajal body. Nat Rev Mol Cell Biol 4(12):975–980

    Article  CAS  PubMed  Google Scholar 

  • Gallina I et al (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6:6533

    Article  PubMed Central  PubMed  Google Scholar 

  • Goehring NW, Hyman AA (2012) Organelle growth control through limiting pools of cytoplasmic components. Curr Biol 22(9):R330–R339

    Article  CAS  PubMed  Google Scholar 

  • Gönczy P (2012) Towards a molecular architecture of centriole assembly. Nat Rev Mol Cell Biol 13(7):425–435

    Article  PubMed  Google Scholar 

  • Grob A, Colleran C, McStay B (2014) Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev 28(3):220–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han TW et al (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149(4):768–779

    Article  CAS  PubMed  Google Scholar 

  • Hassler K et al (2005) Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule. Opt Express 13(19):7415–7423

    Article  CAS  PubMed  Google Scholar 

  • Hu C-D, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9(4):789–798

    Article  CAS  PubMed  Google Scholar 

  • Huisken J et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009

    Article  CAS  PubMed  Google Scholar 

  • Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

    Article  CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454(7208):1088–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kato M et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149(4):753–767

    Article  CAS  PubMed  Google Scholar 

  • Kedersha N et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169(6):871–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1(3):1278–1286

    Article  PubMed Central  PubMed  Google Scholar 

  • Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384–396

    Article  CAS  PubMed  Google Scholar 

  • Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49(3):141–164

    Article  CAS  PubMed  Google Scholar 

  • Kremers G-J et al (2009) Photoconversion in orange and red fluorescent proteins. Nat Methods 6(5):355–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lagier-Tourenne C, Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136(6):1001–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li P et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483(7389):336–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YR et al (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201(3):361–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300(5616):87–91

  • Luby-Phelps K (1999) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  Google Scholar 

  • Mahen R, Venkitaraman AR (2012) Pattern formation in centrosome assembly. Curr Opin Cell Biol 24(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Malinovska L et al (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 23(16):3041–3056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malinovska L, Kroschwald S, Alberti S (2013) Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta Proteins Proteomics 1834(5):918–931

    Article  CAS  Google Scholar 

  • Moldavski O et al (2015) Lipid droplets are essential for efficient clearance of cytosolic inclusion bodies. Dev Cell. doi:10.1016/j.devcel.2015.04.015

    PubMed  Google Scholar 

  • Nguyen T, Bensaude O (1994) Increased thermal aggregation of proteins in ATP‐depleted mammalian cells. Eur J Biochem 220(1):239–246

    Article  CAS  PubMed  Google Scholar 

  • Ogrodnik M et al (2014) Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin. Proc Natl Acad Sci 111(22):8049–8054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pattabiraman S, Kaganovich D (2014) Imperfect asymmetry: the mechanism governing asymmetric partitioning of damaged cellular components during mitosis. Bioarchitecture just-accepted : 00–00

  • Petersen NO, Höddelius PL, Wiseman PW, Seger O, Magnusson KE (1993) Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65(3):1135–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piston DW, Kremers G-J (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32(9):407–414

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. S10-S17

  • Ross CA, Poirier MA (2005) What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11):891–898

    Article  CAS  PubMed  Google Scholar 

  • Santi PA (2011) Light sheet fluorescence microscopy: a review. J Histochem Cytochem 59(2):129–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Semrau S, Schmidt T (2007) Particle image correlation spectroscopy (PICS): retrieving nanometer-scale correlations from high-density single-molecule position data. Biophys J 92(2):613–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaner NC et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Singer AB, Gall JG (2011) An inducible nuclear body in the Drosophila germinal vesicle. Nucleus 2(5):403–409

    Article  PubMed Central  PubMed  Google Scholar 

  • Spokoini R et al (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2(4):738–747

    Article  CAS  PubMed  Google Scholar 

  • Udan M, Baloh RH (2011) Implications of the prion-related Q/N domains in TDP-43 and FUS. Prion 5(1):1–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van den Berg B, John Ellis R, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18(24):6927–6933

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber SC, Brangwynne CP (2012) Getting RNA and protein in phase. Cell 149(6):1188–1191

    Article  CAS  PubMed  Google Scholar 

  • Webster AJ, Cates ME (1998) Stabilization of emulsions by trapped species. Langmuir 14(8):2068–2079

    Article  CAS  Google Scholar 

  • Weisberg SJ et al (2012) Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. Proc Natl Acad Sci 109(39):15811–15816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wohland T et al (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18(10):10627–10641

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwicker D et al (2014) Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc Natl Acad Sci 111(26):E2636–E2645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Triana Amen for helpful discussion and help with generating figures and members of the Kaganovich lab for discussion and comments on the manuscript. We apologize to any colleagues if we unintentionally missed their studies or were unable to mention them due to space limitations. This work was supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC-StG2013 337713 DarkSide starting grant, an Israel Science Foundation Grant ISF 843/11, a German Israel Foundation Grant GIFI-1201-242.13/2012 (D.K.); an Israel Health Ministry grant under the framework of E-Rare-2, a Niedersachsen-Israel Research Program grant, and a grant from the Abisch-Frenkel Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kaganovich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2094 kb)

ESM 2

(PDF 745 kb)

ESM 3

(PNG 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brielle, S., Gura, R. & Kaganovich, D. Imaging stress. Cell Stress and Chaperones 20, 867–874 (2015). https://doi.org/10.1007/s12192-015-0615-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0615-y

Keywords

Navigation