Cell Stress and Chaperones

, Volume 20, Issue 4, pp 643–652 | Cite as

Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol promotes angiogenesis in a mouse model

  • Young-Bin Chen
  • Ying-Wei Lan
  • Tsai-Hsien Hung
  • Lih-Geeng Chen
  • Kong-Bung Choo
  • Winston TK Cheng
  • Hsuan-Shu Lee
  • Kowit-Yu Chong
Original Paper


Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.


Stem cell-based gene therapy Resveratrol Hsp70 promoter VEGFA Angiogenesis Mouse model 



This work was supported in part by the Ministry of Science and Technology (Taiwan), NSC 99-2632-B-182-001-MY3 and MOST 103-2320-B-182-021, Chang Gung Memorial Hospital Grant (CMRPD 34012, CMRPD 180133, CMRPD1B0472, CMRPD1B0473), and the Ministry of Education, Taiwan (EMRPD1C0121).


  1. Advani SH (2010) Targeting mTOR pathway: A new concept in cancer therapy. Indian J Med Pediatr Oncol 31:132–136CrossRefGoogle Scholar
  2. Ait-Aissa S, Porcher J, Arrigo A, Lambre C (2000) Activation of the hsp70 promoter by environmental inorganic and organic chemicals: relationships with cytotoxicity and lipophilicity. Toxicology 145:147–157PubMedCrossRefGoogle Scholar
  3. Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D'Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K (2012) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7:89–104. doi: 10.1038/nprot.2011.435 CrossRefGoogle Scholar
  4. Baron-Menguy C, Bocquet A, Guihot AL, Chappard D, Amiot MJ, Andriantsitohaina R, Loufrani L, Henrion D (2007) Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J 21:3511–3521. doi: 10.1096/fj.06-7782com PubMedCrossRefGoogle Scholar
  5. Belleri M, Ribatti D, Savio M, Stivala LA, Forti L, Tanghetti E, Alessi P, Coltrini D, Bugatti A, Mitola S, Nicoli S, Vannini V, Presta M (2008) alphavbeta3 Integrin-dependent antiangiogenic activity of resveratrol stereoisomers. Mol Cancer Ther 7:3761–3770. doi: 10.1158/1535-7163.MCT-07-2351 PubMedCrossRefGoogle Scholar
  6. Chan AW, Chong KY, Martinovich C, Simerly C, Schatten G (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291:309–312. doi: 10.1126/science.291.5502.309 PubMedCrossRefGoogle Scholar
  7. Chen PL, Easton AS (2011) Anti-angiogenic effects of resveratrol on cerebral angiogenesis. Curr Neurovasc Res 8:14–24PubMedCrossRefGoogle Scholar
  8. Chong KY, Lai CC, Su CY (2013) Inducible and constitutive HSP70s confer synergistic resistance against metabolic challenges. Biochem Biophys Res Commun 430:774–779. doi: 10.1016/j.bbrc.2012.11.072 PubMedCrossRefGoogle Scholar
  9. Chong KY, Hsu CJ, Hung TH, Hu HS, Wang TH, Wang CH, Chen CM, Choo KB, Lai HC, Tseng CP (2015) Wnt pathway activation and ABCB1 expression account for attenuation of proteasome Inhibitor-mediated apoptosis in multidrug-resistant cancer cells. Cancer Biol Ther 16:149–159. doi: 10.4161/15384047.2014.987093 PubMedCrossRefGoogle Scholar
  10. Chun JL, O'Brien R, Song MH, Wondrasch BF, Berry SE (2013) Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med 2:68–80. doi: 10.5966/sctm. 2012-0107 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA (2011) Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 29:1727–1737. doi: 10.1002/stem.720 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Galbraith R (1999) Heme oxygenase: who needs it? Proc Soc Exp Biol Med 222:299–305PubMedCrossRefGoogle Scholar
  13. Gawad A, Ptak-Belowska A, Brzozowski T, Pawlik WW (2009) Monocytes and vascular endothelial cells apoptosis. Role of p-HSP27. J Physiol Pharmacol 60:55–61PubMedGoogle Scholar
  14. Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246PubMedCentralPubMedCrossRefGoogle Scholar
  15. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22PubMedCrossRefGoogle Scholar
  16. Huang TT, Lai HC, Chen YB, Chen LG, Wu YH, Ko YF, Lu CC, Chang CJ, Wu CY, Martel J, Ojcius DM, Chong KY, Young JD (2014) cis-Resveratrol produces anti-inflammatory effects by inhibiting canonical and non-canonical inflammasomes in macrophages. Innate Immun 20:735–750. doi: 10.1177/1753425913507096 PubMedCrossRefGoogle Scholar
  17. Hung TH, Chen CM, Tseng CP, Shen CJ, Wang HL, Choo KB, Chong KY (2014a) FZD1 activates protein kinase C delta-mediated drug-resistance in multidrug-resistant MES-SA/Dx5 cancer cells. Int J Biochem Cell Biol 53:55–65. doi: 10.1016/j.biocel.2014.04.011 PubMedCrossRefGoogle Scholar
  18. Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, Lan YW, Huang TT, Lai HC, Chen CM, Chong KY (2014b) Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/beta-catenin pathway. Oncotarget 5:12273–12290Google Scholar
  19. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, Morishima Y, HegabAE HS, Nomura A, Sakamoto T, Shimura M, Yoshida A, Yamamoto M, Sekizawa K (2005) Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10:1113–1125. doi: 10.1111/j.1365-2443.2005.00905.x PubMedCrossRefGoogle Scholar
  20. Isomoto H, Ohtsuru A, Braiden V, Iwamatsu M, Miki F, Kawashita Y, Mizuta Y, Kaneda Y, Kohno S, Yamashita S (2006) Heat-directed suicide gene therapy mediated by heat shock protein promoter for gastric cancer. Oncol Rep 15:629–635PubMedGoogle Scholar
  21. Janeczek Portalska K, Leferink A, Groen N, Fernandes H, Moroni L, van Blitterswijk C, de Boer J (2012) Endothelial differentiation of mesenchymal stromal cells. PLoS One 7:e46842. doi: 10.1371/journal.pone.0046842
  22. Jurivich DA, Sistonen L, Sarge KD, Morimoto RI (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc Natl Acad Sci U S A 91:2280–2284PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kaga S, Zhan L, Matsumoto M, Maulik N (2005) Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. J Mol Cell Cardiol 39:813–822. doi: 10.1016/j.yjmcc.2005.08.003 PubMedCrossRefGoogle Scholar
  24. Kalil RA, Salles FB, Giusti II, Rodrigues CG, Han SW, Sant'Anna RT, Ludwig E, Grossman G, Prates PR, Sant'anna JR, Teixeira Filho GF, Nardi NB, Nesralla IA (2010) VEGF gene therapy for angiogenesis in refractory angina: phase I/II clinical trial. Rev Bras Cir Cardiovasc 25:311–321PubMedCrossRefGoogle Scholar
  25. Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D'Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95:189–197PubMedGoogle Scholar
  26. Lambrechts D, Devriendt K, Driscoll DA, Goldmuntz E, Gewillig M, Vlietinck R, Collen D, Carmeliet P (2005) Low expression VEGF haplotype increases the risk for tetralogy of Fallot: a family based association study. J Med Genet 42:519–522. doi: 10.1136/jmg.2004.026443 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Leblond AL, Naud P, Forest V, Gourden C, Sagan C, Romefort B, Mathieu E, Delorme B, Collin C, Pagès JC, Sensebé L, Pitard B, Lemarchand P (2009) Developing cell therapy techniques for respiratory disease: intratracheal delivery of genetically engineered stem cells in a murine model of airway injury. Hum Gene Ther 20:1329–1343. doi: 10.1089/hum.2009.035 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lee EJ, Park HW, Jeon HJ, Kim HS, Chang MS (2013) Potentiated therapeutic angiogenesis by primed human mesenchymal stem cells in a mouse model of hindlimb ischemia. Regen Med 8:283–293. doi: 10.2217/rme.13.17 PubMedCrossRefGoogle Scholar
  29. Leeper NJ, Hunter AL, Cooke JP (2010) Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122:517–526. doi: 10.1161/CIRCULATIONAHA.109.881441 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Liao Y, Feng J, Yi Q, Cui H, He L, Tang L (2013) A siRNA system based on HSP70 promoter results in controllable and powerful gene silencing by heat-induction. Biotechnol Prog 29:1289–1297. doi: 10.1002/btpr.1781 PubMedCrossRefGoogle Scholar
  31. Lin H, Shabbir A, Molnar M, Yang J, Marion S, Canty JM Jr, Lee T (2008) Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol 216:458–468. doi: 10.1002/jcp.21414 PubMedCrossRefGoogle Scholar
  32. Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP (1999) Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 274:15781–15785PubMedCrossRefGoogle Scholar
  33. Luczak K, Balcerczyk A, Soszynski M, Bartosz G (2004) Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biol Int 28:483–486. doi: 10.1016/j.cellbi.2004.03.004 PubMedCrossRefGoogle Scholar
  34. Moon WS, Rhyu KH, Kang MJ, Lee DG, Yu HC, Yeum JH, Koh GY, Tarnawski AS (2003) Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod Pathol 16:552–557. doi: 10.1097/01.MP.0000071841.17900.69 PubMedCrossRefGoogle Scholar
  35. Moon HH, Joo MK, Mok H, Lee M, Hwang KC, Kim SW, Jeong JH, Choi D, Kim SH (2014) MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials 35:1744–1754. doi: 10.1016/j.biomaterials.2013.11.019 PubMedCrossRefGoogle Scholar
  36. Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127:749–756. doi: 10.1161/CIRCULATIONAHA.112.128413 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Porcu P, Emanueli C, Kapatsoris M, Chao J, Chao L, Madeddu P (2002) Reversal of angiogenic growth factor upregulation by revascularization of lower limb ischemia. Circulation 105:67–72PubMedCrossRefGoogle Scholar
  38. Putics A, Vegh EM, Csermely P, Soti C (2008) Resveratrol induces the heat-shock response and protects human cells from severe heat stress. Antioxid Redox Signal 10:65–75. doi: 10.1089/ars.2007.1866 PubMedCrossRefGoogle Scholar
  39. Reinders ME, Rabelink TJ, Briscoe DM (2006) Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J Am Soc Nephrol 17:932–942. doi: 10.1681/ASN.2005121250 PubMedCrossRefGoogle Scholar
  40. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674. doi: 10.1038/386671a0 PubMedCrossRefGoogle Scholar
  41. Rissanen TT, Rutanen J, Yla-Herttuala S (2004) Gene transfer for therapeutic vascular growth in myocardial and peripheral ischemia. Adv Genet 52:117–164. doi: 10.1016/S0065-2660(04)52004-7 PubMedGoogle Scholar
  42. Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128. doi: 10.1002/mnfr.200800148 PubMedCrossRefGoogle Scholar
  43. Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144. doi: 10.1016/S0002-9440(10)64525-7 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ushio-Fukai M, Urao N (2009) Novel role of NADPH oxidase in angiogenesis and stem/progenitor cell function. Antioxid Redox Signal 11:2517–2533. doi: 10.1089/ARS.2009.2582 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Wang Y, Kilic E, Kilic U, Weber B, Bassetti CL, Marti HH, Hermann DM (2005) VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 128:52–63PubMedCrossRefGoogle Scholar
  46. Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL (2011) Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater 99:89–101. doi: 10.1002/jbm.b.31875 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Xiao Z, Kong Y, Yang S, Li M, Wen J, Li L (2007) Upregulation of Flk-1 by bFGF via the ERK pathway is essential for VEGF-mediated promotion of neural stem cell proliferation. Cell Res 17:73–79. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  48. Zhang M, Zhang BH, Chen L, An W (2002) Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation. Cell Res 12:123–132. doi: 10.1038/ PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2015

Authors and Affiliations

  • Young-Bin Chen
    • 1
  • Ying-Wei Lan
    • 2
  • Tsai-Hsien Hung
    • 2
  • Lih-Geeng Chen
    • 6
  • Kong-Bung Choo
    • 7
  • Winston TK Cheng
    • 8
  • Hsuan-Shu Lee
    • 1
    • 9
  • Kowit-Yu Chong
    • 2
    • 3
    • 4
    • 5
  1. 1.Institute of BiotechnologyNational Taiwan UniversityTaipeiRepublic of China
  2. 2.Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of MedicineChang Gung UniversityTao-YuanRepublic of China
  3. 3.Department of Medical Biotechnology and Laboratory Sciences, College of MedicineChang Gung UniversityTao-YuanRepublic of China
  4. 4.Molecular Medicine Research Center, College of MedicineChang Gung UniversityTao-YuanRepublic of China
  5. 5.Department of Family MedicineChang Gung Memorial Hospital-LinkouTaoyuanRepublic of China
  6. 6.Department of Microbiology, Immunology and Biopharmaceuticals, College of Life SciencesNational Chiayi UniversityChiayiRepublic of China
  7. 7.Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell ResearchUniversiti Tunku Abdul RahmanSelangorMalaysia
  8. 8.Department of Animal Science and BiotechnologyTunghai UniversityTaichungRepublic of China
  9. 9.Department of Internal MedicineNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiRepublic of China

Personalised recommendations