Cell Stress and Chaperones

, Volume 20, Issue 1, pp 139–147 | Cite as

A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells

  • Daniela Schilling
  • Fabian Tetzlaff
  • Sarah Konrad
  • Wei Li
  • Gabriele Multhoff
Original Paper


Recent findings suggest that hypoxia of the tumor microenvironment contributes to immune escape from natural killer (NK) cell-mediated cytotoxicity. Heat shock protein 70 (Hsp70) and the stress-regulated major histocompatibility class I chain-related protein A and B (MICA/B) both serve as ligands for activated NK cells when expressed on the cell surface of tumor cells. Herein, we studied the effects of hypoxia and hypoxia-inducible factor-1α (HIF-1α) on the membrane expression of these NK cell ligands in H1339 with high and MDA-MB-231 tumor cells with low basal HIF-1α levels and its consequences on NK cell-mediated cytotoxicity. We could show that a hypoxia-induced decrease in the membrane expression of MICA/B and Hsp70 on H1339 and MDA-MB-231 cells, respectively, is associated with a reduced sensitivity to NK cell-mediated lysis. A knockdown of HIF-1α revealed that the decreased surface expression of MICA/B under hypoxia is dependent on HIF-1α in H1339 cells with high basal HIF-1α levels. Hypoxia and HIF-1α did not affect the MICA/B expression in MDA-MB-231 cells but reduced the Hsp70 membrane expression which in turn also impaired NK cell recognition. Furthermore, we could show that the hypoxia-induced decrease in membrane Hsp70 is independent of HIF-1α in MDA-MB-231. Our data indicate that hypoxia-induced downregulation of both NK cell ligands MICA/B and Hsp70 impairs NK cell-mediated cytotoxicity, whereby only MICA/B appears to be regulated by HIF-1α.


Hsp70 MICA/B Hypoxia HIF-1α NK cell Immune escape 



The authors want to thank Andrea Mair and Jessica Pelzel for excellent technical assistance and Eva and Thomas Kriehuber for purification of plasmids.

This work was supported by the Wilhelm Sander-Stiftung (2012.078.1), EU-CELLEUROPE (315963), BMBF (Strahlenkompetenz, 02NUK007E; 02NUK031B; 02NUK038A; Innovative Therapies, 01GU0823; NSCLC, 16GW0030; m4 - Leading Edge Cluster, 16EX1021C), and the DFG Cluster of Excellence: Munich Centre for Advanced Photonics MAP. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft (DFG) under Grant Agreement Nos. SFB 824/B4, INST 95/980-1 FUGG, and INST 411/37-1 FUGG irradiation devices.

Conflicts of interest



  1. Aguera-Gonzalez S, Boutet P, Reyburn HT, Vales-Gomez M (2009) Brief residence at the plasma membrane of the MHC class I-related chain B is due to clathrin-mediated cholesterol-dependent endocytosis and shedding. J Immunol 182(8):4800–4808. doi: 10.4049/jimmunol.0800713 PubMedCrossRefGoogle Scholar
  2. Baek SH, Lee UY, Park EM, Han MY, Lee YS, Park YM (2001) Role of protein kinase Cd in transmitting hypoxia signal to HSF and HIF-1. J Cell Physiol 188(2):223–235. doi: 10.1002/jcp.1117 PubMedCrossRefGoogle Scholar
  3. Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR, Graham CH (2011) Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res 71(24):7433–7441PubMedCrossRefGoogle Scholar
  4. Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74(3):665–674. doi: 10.1158/0008-5472.CAN-13-0992 PubMedCrossRefGoogle Scholar
  5. Chimote AA, Kuras Z, Conforti L (2012) Disruption of kv1.3 channel forward vesicular trafficking by hypoxia in human T lymphocytes. J Biol Chem 287(3):2055–2067. doi: 10.1074/jbc.M111.274209 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Culver C, Melvin A, Mudie S, Rocha S (2011) HIF-1alpha depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. Cell Cycle 10(8):1249–1260PubMedCentralPubMedCrossRefGoogle Scholar
  7. Fernandez-Messina L, Reyburn HT, Vales-Gomez M (2012) Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front Immunol 3:299. doi: 10.3389/fimmu.2012.00299 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Gastpar R, Gehrmann M, Bausero M, Asea A, Gross C, Schroeder J, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65(12):5238–5247. doi: 10.1158/0008-5472.CAN-04-3804 PubMedCentralPubMedCrossRefGoogle Scholar
  9. González S, López-Soto A, Suarez-Alvarez B, López-Vázquez A, López-Larrea C (2008) NKG2D ligands: key targets of the immune response. Trends Immunol 29(8):397–403. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  10. Gross C, Schmidt-Wolf I, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart L, Multhoff G (2003) Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8(4):348–360PubMedCentralPubMedCrossRefGoogle Scholar
  11. Juhasz K, Thuenauer R, Spachinger A, Duda E, Horvath I, Vigh L, Sonnleitner A, Balogi Z (2013) Lysosomal rerouting of Hsp70 trafficking as a potential immune activating tool for targeting melanoma. Curr Pharm Des 19(3):430–440PubMedCentralPubMedCrossRefGoogle Scholar
  12. Krause S, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin Cancer Res Off J Am Assoc Cancer Res 10(11):3699–3707. doi: 10.1158/1078-0432.CCR-03-0683 CrossRefGoogle Scholar
  13. Lee CT, Mace T, Repasky EA (2010) Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hyperth Off J Eur Soc Hyperth Oncol N Am Hyperth Group 26(3):232–246. doi: 10.3109/02656731003601745 CrossRefGoogle Scholar
  14. Li W, Li Y, Guan S, Fan J, Cheng CF, Bright AM, Chinn C, Chen M, Woodley DT (2007) Extracellular heat shock protein-90alpha: linking hypoxia to skin cell motility and wound healing. EMBO J 26(5):1221–1233PubMedCentralPubMedCrossRefGoogle Scholar
  15. Luo L, Lu J, Wei L, Long D, Guo JY, Shan J, Li FS, Lu PY, Li PY, Feng L (2010) The role of HIF-1 in up-regulating MICA expression on human renal proximal tubular epithelial cells during hypoxia/reoxygenation. BMC Cell Biol 11:91PubMedCentralPubMedCrossRefGoogle Scholar
  16. Mambula S, Calderwood S (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol (Baltimore, Md : 1950) 177(11):7849–7857CrossRefGoogle Scholar
  17. Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W, Issels RD (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61(2):272–279PubMedCrossRefGoogle Scholar
  18. Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6(4):337–344PubMedCentralPubMedCrossRefGoogle Scholar
  19. Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, Mami-Chouaib F, Chouaib S (2012) Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res 72(18):4629–4641. doi: 10.1158/0008-5472.CAN-12-1383 PubMedCrossRefGoogle Scholar
  20. Park EC, Ghose P, Shao Z, Ye Q, Kang L, Xu XZ, Powell-Coffman JA, Rongo C (2012) Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism. EMBO J 31(6):1379–1393. doi: 10.1038/emboj.2011.499 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Schilling D, Bayer C, Geurts-Moespot A, Sweep FC, Pruschy M, Mengele K, Sprague LD, Molls M (2007) Induction of plasminogen activator inhibitor type-1 (PAI-1) by hypoxia and irradiation in human head and neck carcinoma cell lines. BMC Cancer 7:143PubMedCentralPubMedCrossRefGoogle Scholar
  22. Schilling D, Gehrmann M, Steinem C, De MA, Pockley AG, Abend M, Molls M, Multhoff G (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23(8):2467–2477PubMedCentralPubMedCrossRefGoogle Scholar
  23. Schilling D, Bayer C, Emmerich K, Molls M, Vaupel P, Huber RM, Multhoff G (2012a) Basal HIF-1a expression levels are not predictive for radiosensitivity of human cancer cell lines. Strahlenther Onkol. doi: 10.1007/s00066-011-0051-6 Google Scholar
  24. Schilling D, Bayer C, Li W, Molls M, Vaupel P, Multhoff G (2012b) Radiosensitization of normoxic and hypoxic H1339 lung tumor cells by heat shock protein 90 inhibition is independent of hypoxia inducible factor-1a. PLoS One 7(2):e31110PubMedCentralPubMedCrossRefGoogle Scholar
  25. Shipp C, Derhovanessian E, Pawelec G (2012) Effect of culture at low oxygen tension on the expression of heat shock proteins in a panel of melanoma cell lines. PLoS One 7(6):e37475. doi: 10.1371/journal.pone.0037475 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H, Graham CH (2008) Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res 68(12):4746–4753PubMedCrossRefGoogle Scholar
  27. Stangl S, Gross C, Pockley AG, Asea AA, Multhoff G (2008) Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells. Cell Stress Chaperones 13(2):221–230. doi: 10.1007/s12192-007-0008-y PubMedCentralPubMedCrossRefGoogle Scholar
  28. Stangl S, Gehrmann M, Riegger J, Kuhs K, Riederer I, Sievert W, Hube K, Mocikat R, Dressel R, Kremmer E, Pockley AG, Friedrich L, Vigh L, Skerra A, Multhoff G (2011) Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci USA 108(2):733–738PubMedCentralPubMedCrossRefGoogle Scholar
  29. Wang Y, Roche O, Yan MS, Finak G, Evans AJ, Metcalf JL, Hast BE, Hanna SC, Wondergem B, Furge KA, Irwin MS, Kim WY, Teh BT, Grinstein S, Park M, Marsden PA, Ohh M (2009) Regulation of endocytosis via the oxygen-sensing pathway. Nat Med 15(3):319–324. doi: 10.1038/nm.1922 PubMedCrossRefGoogle Scholar
  30. Wei L, Lu J, Feng L, Long D, Shan J, Li S, Li Y (2010) HIF-1alpha accumulation upregulates MICA and MICB expression on human cardiomyocytes and enhances NK cell cytotoxicity during hypoxia-reoxygenation. Life Sci 87(3–4):111–119PubMedCrossRefGoogle Scholar
  31. Woodley DT, Fan J, Cheng CF, Li Y, Chen M, Bu G, Li W (2009) Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90alpha autocrine signaling to promote keratinocyte migration. J Cell Sci 122(Pt 10):1495–1498PubMedCentralPubMedCrossRefGoogle Scholar
  32. Yamada N, Yamanegi K, Ohyama H, Hata M, Nakasho K, Futani H, Okamura H, Terada N (2012) Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cells in a HIF-1alpha-dependent manner. Int J Oncol 41(6):2005–2012. doi: 10.3892/ijo.2012.1630 PubMedGoogle Scholar
  33. Yoon SO, Shin S, Mercurio AM (2005) Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 65(7):2761–2769. doi: 10.1158/0008-5472.CAN-04-4122 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2014

Authors and Affiliations

  • Daniela Schilling
    • 1
    • 2
  • Fabian Tetzlaff
    • 1
  • Sarah Konrad
    • 1
  • Wei Li
    • 3
  • Gabriele Multhoff
    • 1
    • 2
  1. 1.Department of Radiation OncologyKlinikum rechts der Isar, Technische Universität MünchenMunichGermany
  2. 2.Institute of Biological and Medical Imaging, IBMI; CCG - Innate Immunity in Tumor BiologyHelmholtz Center Munich – German Research Center for Environmental HealthMunichGermany
  3. 3.Department of DermatologyUniversity of Southern California Keck School of MedicineLos AngelesUSA

Personalised recommendations