Skip to main content
Log in

Development of a multifunctional luciferase reporters system for assessing endoplasmic reticulum-targeting photosensitive compounds

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Photodynamic therapy (PDT) is a recently developed antitumor modality utilizing the generation of reactive oxygen species (ROS), through light irradiation of photosensitizers (PSs) localized in tumor. Interference with proper functioning of endoplasmic reticulum (ER) by ER-targeting PDT is a newly proposed strategy to achieve tumor cell death. The aim of this study is to establish a multifunctional model to screen and assess ER-targeting PSs based on luciferase reporters system. Upregulation of GRP78 is a biomarker for the onset of ER stress. CHOP is a key initiating player in ER stress-induced cell death. Here, the most sensitive fragments of GRP78 and CHOP promoters responding to ER-targeting PDT were mapped and cloned into pGL3-basic vector, forming −702/GRP78-Luc and −443/CHOP-Luc construct, respectively. We demonstrated that −702/GRP78-Luc expression can be used to indicate the ER-targeting of PSs, meanwhile estimate the ROS level induced by low-dose ER-targeting PDT. Moreover, the luciferase signaling of −443/CHOP-Luc showed highly consistence with apoptosis rate caused by ER-targeting PDT, suggesting that −443/CHOP-Luc can evaluate the antitumor properties of PSs. Hypericin, Foscan® and methylene blue were applied to verify the sensitivity and reliability of our model. These results proved that GRP78-CHOP model may be suitable to screen ER-targeting photosensitive compounds with lower cost and higher sensitivity than traditional ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali SM, Olivo M (2002) Bio-distribution and subcellular localization of Hypericin and its role in PDT induced apoptosis in cancer cells. Int J Oncol 21(3):531–540

    CAS  PubMed  Google Scholar 

  • Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13(3):363–373

    Article  CAS  PubMed  Google Scholar 

  • Buytaert E, Matroule J, Durinck S, Close P, Kocanova S, Vandenheede J, De Witte P, Piette J, Agostinis P (2007) Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells. Oncogene 27(13):1916–1929

    Article  PubMed  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodynamic Ther 1(4):279–293

    Article  CAS  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodynamic Ther 2(1):1–23

    Article  CAS  Google Scholar 

  • Cheng X, Guerasimova A, Manke T, Rosenstiel P, Haas S, Warnatz H-J, Querfurth R, Nietfeld W, Vanhecke D, Lehrach H (2010) Screening of human gene promoter activities using transfected-cell arrays. Gene 450(1):48–54

    Article  CAS  PubMed  Google Scholar 

  • Davids LM, Kleemann B, Kacerovská D, Pizinger K, Kidson SH (2008) Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells. J Photochem Photobiol, B 91(2):67–76

    Article  CAS  Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  PubMed  Google Scholar 

  • Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, Zimmermann R (2009) Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci 66(9):1556–1569

    Article  CAS  PubMed  Google Scholar 

  • François A, Marchal S, Guillemin F, Bezdetnaya L (2011) mTHPC-based photodynamic therapy induction of autophagy and apoptosis in cultured cells in relation to mitochondria and endoplasmic reticulum stress. Int J Oncol 39(6):1537–1543

    PubMed  Google Scholar 

  • Fuchs J, Weber S, Kaufmann R (2000) Genotoxic potential of porphyrin type photosensitizers with particular emphasis on 5-aminolevulinic acid: implications for clinical photodynamic therapy. Free Radical Biol Med 28(4):537–548

    Article  CAS  Google Scholar 

  • Gabrielli D, Belisle E, Severino D, Kowaltowski AJ, Baptista MS (2004) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol 79(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Gomer CJ, Ferrario A, Rucker N, Wong S, Lee AS (1991) Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization. Cancer Res 51(24):6574–6579

    CAS  PubMed  Google Scholar 

  • Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM (1996) Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res 56(10):2355–2360

    CAS  PubMed  Google Scholar 

  • Grebeňová D, Kuželová K, Smetana K, Pluskalová M, Cajthamlová H, Marinov I, Fuchs O, Souček J, Jarolim P, Hrkal Z (2003) Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells. J Photochem Photobiol, B 69(2):71–85

    Article  Google Scholar 

  • Guyton K, Xu Q, Holbrook N (1996) Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J 314:547–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korbelik M, Sun J, Cecic I (2005) Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 65(3):1018–1026

    CAS  PubMed  Google Scholar 

  • Kwok SC, Daskal I (2008) Brefeldin A activates CHOP promoter at the AARE, ERSE and AP-1 elements. Mol Cell Biochem 319(1–2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35(4):373–381

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lee AS (2006) Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 6(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chu X, Gao M, Li W (2010) Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim Biophys Sin 42(1):80–89

    Article  CAS  PubMed  Google Scholar 

  • Liu RY, Kim D, Yang S-H, Li GC (1993) Dual control of heat shock response: involvement of a constitutive heat shock element-binding factor. Proc Natl Acad Sci U S A 90(7):3078–3082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Logue SE, Cleary P, Saveljeva S, Samali A (2013) New directions in ER stress-induced cell death. Apoptosis 18(5):537–46

    Article  PubMed  Google Scholar 

  • Luna MC, Ferrario A, Wong S, Fisher AM, Gomer CJ (2000) Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res 60(6):1637–1644

    CAS  PubMed  Google Scholar 

  • L-y X, S-m C, Oleinick NL (2001) Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res 263(1):145–155

    Article  Google Scholar 

  • Marchal S, François A, Dumas D, Guillemin F, Bezdetnaya L (2007) Relationship between subcellular localisation of Foscan® and caspase activation in photosensitised MCF-7 cells. Br J Cancer 96(6):944–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moserova I, Kralova J (2012) Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways. PLoS One 7(3):e32972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oyadomari S, Mori M (2003) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389

    Article  Google Scholar 

  • Peng Q, Moan J, Nesland JM (1996) Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol 20(2):109–129

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Chung HY, Goto S (2005) Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Ritz R, Roser F, Radomski N, Strauss WS, Tatagiba M, Gharabaghi A (2008) Subcellular colocalization of hypericin with respect to endoplasmic reticulum and Golgi apparatus in glioblastoma cells. Anticancer Res 28(4B):2033–2038

    PubMed  Google Scholar 

  • Robertson C, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol, B 96(1):1–8

    Article  CAS  Google Scholar 

  • Schönthal AH (2013) Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol 85(5):653–666

    Article  PubMed  Google Scholar 

  • Shen K, Zhang H, Sun L, Xu Y, Qian X, Liu J (2013) A ROS-mediated lysosomal–mitochondrial pathway is induced by a novel Amonafide analogue, 7c, in human Hela cervix carcinoma cells. Cancer Lett 333(2):229–238

    Article  CAS  PubMed  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szokalska A, Makowski M, Nowis D, Wilczyński GM, Kujawa M, Wójcik C, Młynarczuk-Biały I, Salwa P, Bil J, Janowska S (2009) Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res 69(10):4235–4243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teiten M, Bezdetnaya L, Morliere P, Santus R, Guillemin F (2003) Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan® localisation in cultured tumour cells. Br J Cancer 88(1):146–152

    Article  PubMed Central  PubMed  Google Scholar 

  • Walther W, Stein U (2009) Heat-responsive gene expression for gene therapy. Adv Drug Delivery Rev 61(7):641–649

    Article  CAS  Google Scholar 

  • Wong S, Luna M, Ferrario A, Gomer CJ (2004) CHOP activation by photodynamic therapy increases treatment induced photosensitization. Lasers Surg Med 35(5):336–341

    Article  PubMed  Google Scholar 

  • Woo KJ, Lee TJ, Lee SH, Lee J-M, Seo J-H, Jeong Y-J, Park J-W, Kwon TK (2007) Elevated gadd153/chop expression during resveratrol-induced apoptosis in human colon cancer cells. Biochem Pharmacol 73(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins Involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Le V, Cheng Z, Xie S, Li H, Tian J, Liu J (2013) Development of rapid and highly sensitive HSPA1A promoter-driven luciferase reporter system for assessing oxidative stress associated with low-dose photodynamic therapy. Cell Stress Chaperones 18(2):203–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12(7):982–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Committee of Science and Technology (No. 13140902300), Nano Science and Technology Special Funding of Shanghai Committee of Science and Technology (No. 11 nm0503700), the Shanghai Committee of Science and Technology [grant 11DZ2260600] and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Liu or Jianwen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Zhang, L., Lei, K. et al. Development of a multifunctional luciferase reporters system for assessing endoplasmic reticulum-targeting photosensitive compounds. Cell Stress and Chaperones 19, 927–937 (2014). https://doi.org/10.1007/s12192-014-0517-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0517-4

Keywords

Navigation