Advertisement

Cell Stress and Chaperones

, Volume 19, Issue 2, pp 289–293 | Cite as

TLR2, TLR3, and TLR4 activation specifically alters the oxidative status of intestinal epithelial cells

  • Eva Latorre
  • Carmen Mendoza
  • Elena Layunta
  • Ana I. Alcalde
  • José E. Mesonero
Short Communication

Abstract

Intestinal inflammatory diseases are the result of multiple processes, including mucosal oxidative stress and perturbed homeostasis between commensal bacteria and mucosal immunity. Toll-like receptors (TLRs) recognize molecular-associated microorganisms' patterns and trigger innate immunity responses contributing to intestinal homeostasis and inflammatory responses. However, TLRs effects on redox balance in intestinal mucosa remain unknown. Therefore, the present study analyzes the effect of TLR2, TLR3, and TLR4 on both oxidative damage of lipids and proteins, and the activity of antioxidant enzymes in enterocyte-like Caco-2 cells. The results show that the activation of these TLRs increased lipid and protein oxidation levels; however, the effect on the antioxidant enzymes activity is different depending on the TLR activated. These results suggest that the activation of TLR2, TLR3, and TLR4 might affect intestinal inflammation by not only their inherent innate immunity responses, but also their pro-oxidative effects on intestinal epithelial cells.

Keywords

TLR2 TLR3 TLR4 Oxidative stress Antioxidant enzymes Caco-2 cells 

Notes

Acknowledgments

This work was funded by grants from the Spanish Ministry of Science and Innovation and the European Regional Development Fund (ERDF/FEDER) (BFU2010-18971), European Social Found (ESF) and the Aragon Regional Government (B61) and the Foundation for the Study of Inflammatory Bowel Diseases in Aragón (ARAINF 012/2008). The authors would like to thank Dr. Brot-Laroche (INSERM, UMR S 872, Centre de Recherche des Cordeliers, Paris) for providing Caco-2/TC7 cells. E. Latorre and E. Layunta are PhD student fellows from Aragon Regional Government (B105/11 and B022/13, respectively).

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  2. Al-Shudiefat AA, Sharma AK, Bagchi AK, Dhingra S, Singal PK (2013) Oleic acid mitigates TNF-α-induced oxidative stress in rat cardiomyocytes. Mol Cell Biochem 372:75–82PubMedCrossRefGoogle Scholar
  3. Ames BN (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals, and degenerative diseases. Science 221:1256–1264PubMedCrossRefGoogle Scholar
  4. Borysiewicz E, Doppalapudi S, Kirschman LT, Konat GW (2013) TLR3 ligation protects human astrocytes against oxidative stress. J Neuroimmunol 255:54–59PubMedCrossRefGoogle Scholar
  5. Buijsse B, Lee DH, Steffen L, Erickson RR, Luepker RV, Jacobs DR Jr, Holtzman JL (2012) Low serum glutathione peroxidase activity is associated with increased cardiovascular mortality in individuals with low HDLc's. PLoS One 7(6):e38901PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cario E (2008) Barrier-protective function of intestinal epithelial toll-like receptor 2. Mucosal Immunol 1:S62–S66PubMedCrossRefGoogle Scholar
  7. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421PubMedCrossRefGoogle Scholar
  8. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress, and the biology of ageing. Nature 408:239–247PubMedCrossRefGoogle Scholar
  9. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121PubMedCrossRefGoogle Scholar
  10. Frantz S, Kelly RA, Bourcier T (2001) Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem 276:5197–5203PubMedCrossRefGoogle Scholar
  11. Fukata M, Vamadevan AS, Abreu MT (2009) Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 21:242–253PubMedCrossRefGoogle Scholar
  12. Gárate I, Garcia-Bueno B, Madrigal JL, Caso JR, Alou L, Gomez-Lus ML, Micó JA, Leza JC (2013) Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol Psychiatry 73:32–43PubMedCrossRefGoogle Scholar
  13. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med 48:1121–1132PubMedCentralPubMedCrossRefGoogle Scholar
  14. Grisham MB (1994) Oxidants and free radicals in inflammatory bowel disease. Lancet 344:859–861PubMedCrossRefGoogle Scholar
  15. Kadl A, Sharma PR, Chen W, Agrawal R, Meher AK, Rudraiah S, Grubbs N, Sharma R, Leitinger N (2011) Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2. Free Radic Biol Med 51:1903–1909PubMedCentralPubMedCrossRefGoogle Scholar
  16. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267PubMedCrossRefGoogle Scholar
  17. Ko MK, Saraswathy S, Parikh JG, Rao NA (2011) The role of TLR4 activation in photoreceptor mitochondrial oxidative stress. Invest Ophthalmol Vis Sci 52:5824–5835PubMedCrossRefGoogle Scholar
  18. Koarai A, Sugiura H, Yanagisawa S, Ichikawa T, Minakata Y, Matsunaga K, Hirano T, Akamatsu K, Ichinose M (2010) Oxidative stress enhances toll-like receptor 3 response to double-stranded RNA in airway epithelial cells. Am J Respir Cell Mol Biol 42:651–660PubMedCrossRefGoogle Scholar
  19. Kruidenier L, Kuiper I, Van Duijn W, Mieremet-Ooms MA, van Hogezand RA, Lamers CB, Verspaget HW (2003) Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease. J Pathol 201:17–27PubMedCrossRefGoogle Scholar
  20. Lee IT, Shih RH, Lin CC, Chen JT, Yang CM (2012) Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells. Cell Commun Sig 10:33CrossRefGoogle Scholar
  21. Lu L, Oveson BC, Jo YJ, Lauer TW, Usui S, Komeima K, Xie B, Campochiaro PA (2009) Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage. Antioxid Redox Signal 11:715–724PubMedCrossRefGoogle Scholar
  22. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244:6056–6063PubMedGoogle Scholar
  23. McKenzie SJ, Baker MS, Buffinton GD, Doe WF (1996) Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Invest 98:136–141PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mendoza C, Matheus N, Iceta R, Mesonero JE, Alcalde AI (2009) Lipopolysaccharide induces alteration of serotonin transporter in human intestinal epithelial cells. Innate Immun 15:243–250PubMedCrossRefGoogle Scholar
  25. Mendoza C, Matheus N, Latorre E, Castro M, Mesonero JE, Alcalde AI (2012) Toll-like receptor 3 activation affects serotonin transporter activity and expression in human enterocyte-like Caco-2 cells. Cell Physiol Biochem 30:187–198PubMedCrossRefGoogle Scholar
  26. Mintz M, Dvir D, Ilia-Ezra R, Shpigel NY (2013) Pam3CSK4/TLR2 signaling elicits neutrophil recruitment and restricts invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine mastitis model. Vet Immunol Immunopathol 152:168–175PubMedCrossRefGoogle Scholar
  27. Patel AK, Hackam AS (2013) Toll-like receptor 3 (TLR3) protects retinal pigmented epithelium (RPE) cells from oxidative stress through a STAT3-dependent mechanism. Mol Immunol 54:122–131PubMedCrossRefGoogle Scholar
  28. Paul-Clark MJ, McMaster SK, Sorrentino R, Sriskandan S, Bailey LK, Moreno L, Ryffel B, Quesniaux VF, Mitchell JA (2009) Toll-like receptor 2 is essential for the sensing of oxidants during inflammation. Am J Respir Crit Care Med 179:299–306PubMedCrossRefGoogle Scholar
  29. Schachtele SJ, Hu S, Little MR, Lokensgard JR (2010) Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation 7:35PubMedCentralPubMedCrossRefGoogle Scholar
  30. Usui S, Komeima K, Lee SY, Jo YJ, Ueno S, Rogers BS, Wu Z, Shen J, Lu L, Oveson BC, Rabinovitch PS, Campochiaro PA (2009) Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa. Mol Ther 17:778–786PubMedCrossRefGoogle Scholar
  31. Wehr NB, Levine RL (2013) Quantification of protein carbonylation. Methods Mol Biol 965:265–281PubMedCrossRefGoogle Scholar
  32. Zhu H, Li YR (2012) Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med 237:474–480CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2013

Authors and Affiliations

  • Eva Latorre
    • 1
  • Carmen Mendoza
    • 1
    • 2
  • Elena Layunta
    • 1
  • Ana I. Alcalde
    • 1
  • José E. Mesonero
    • 1
    • 3
  1. 1.Department of Pharmacology and Physiology, Faculty of Veterinary SciencesUniversity of ZaragozaZaragozaSpain
  2. 2.Department of Basic Sciences. Faculty of Veterinary SciencesUniversity Centroccidental Lisandro AlvaradoTarabanaVenezuela
  3. 3.Departamento de Farmacología y Fisiología, Facultad de VeterinariaZaragozaSpain

Personalised recommendations