Cell Stress and Chaperones

, Volume 19, Issue 2, pp 159–172 | Cite as

Non-coding RNAs turn up the heat: An emerging layer of novel regulators in the mammalian heat shock response

  • Robert F. PlaceEmail author
  • Emily J. NoonanEmail author
Mini Review


The field of non-coding RNA (ncRNA) has expanded over the last decade following the discoveries of several new classes of regulatory ncRNA. A growing amount of evidence now indicates that ncRNAs are involved even in the most fundamental of cellular processes. The heat shock response is no exception as ncRNAs are being identified as integral components of this process. Although this area of research is only in its infancy, this article focuses on several classes of regulatory ncRNA (i.e., miRNA, lncRNA, and circRNA), while summarizing their activities in mammalian heat shock. We also present an updated model integrating the traditional heat shock response with the activities of regulatory ncRNA. Our model expands on the mechanisms for efficient execution of the stress response, while offering a more comprehensive summary of the major regulators and responders in heat shock signaling. It is our hope that much of what is discussed herein may help researchers in integrating the fields of heat shock and ncRNA in mammals.


ncRNA miRNA lncRNA circRNA ceRNA HSP HSP90 HSP70 HSF1 HSR1 7SK IGS Pseudogenes Exosome Cell stress Thermal stress Hyperthermia 


  1. Audas TE, Jacob MD, Lee S (2012) Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 45(2):147–157. doi: 10.1016/j.molcel.2011.12.012 PubMedCrossRefGoogle Scholar
  2. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336. doi: 10.1016/j.molcel.2007.09.028 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bina M (2008) The genome browser at UCSC for locating genes, and much more! Mol Biotechnol 38(3):269–275. doi: 10.1007/s12033-007-9019-2 PubMedCrossRefGoogle Scholar
  4. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40(2):216–227. doi: 10.1016/j.molcel.2010.09.024 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Brocchieri L, Conway de Macario E, Macario AJ (2008) hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19. doi:  10.1186/1471-2148-8-19
  6. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36(6):932–941. doi: 10.1016/j.molcel.2009.11.020 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Calderwood SK (2005) Regulatory interfaces between the stress protein response and other gene expression programs in the cell. Methods 35(2):139–148PubMedCrossRefGoogle Scholar
  8. Dellavalle RP, Petersen R, Lindquist S (1994) Preferential deadenylation of Hsp70 mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster. Mol Cell Biol 14(6):3646–3659PubMedCentralPubMedGoogle Scholar
  9. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789. doi: 10.1101/gr.132159.111 PubMedCrossRefGoogle Scholar
  10. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, Zanesi N, Crawford M, Ozer GH, Wernicke D, Alder H, Caligiuri MA, Nana-Sinkam P, Perrotti D, Croce CM (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109(31):E2110–E2116. doi: 10.1073/pnas.1209414109 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Eyre T, Fitzgerald S, Fernandez-Banet J, Graf S, Haider S, Hammond M, Holland R, Howe KL, Howe K, Johnson N, Jenkinson A, Kahari A, Keefe D, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Prlic A, Rice S, Rios D, Schuster M, Sealy I, Slater G, Smedley D, Spudich G, Trevanion S, Vilella AJ, Vogel J, White S, Wood M, Birney E, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Kasprzyk A, Proctor G, Smith J, Ureta-Vidal A, Searle S (2008) Ensembl 2008. Nucleic Acids Res 36 (Database issue):D707–714. doi:  10.1093/nar/gkm988
  12. Forafonov F, Toogun OA, Grad I, Suslova E, Freeman BC, Picard D (2008) p23/Sba1p protects against Hsp90 inhibitors independently of its intrinsic chaperone activity. Mol Cell Biol 28(10):3446–3456. doi: 10.1128/MCB.02246-07 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi: 10.1101/gr.082701.108 PubMedCrossRefGoogle Scholar
  14. Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45(6):814–825. doi: 10.1016/j.molcel.2012.01.017 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi: 10.1016/j.cell.2010.03.009 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. doi: 10.1038/nature11993 PubMedCrossRefGoogle Scholar
  17. Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 12:300. doi:  10.1186/1471-2105-12-300
  18. Huang AJ, Yu KD, Li J, Fan L, Shao ZM (2012) Polymorphism rs4919510:C>G in mature sequence of human microRNA-608 contributes to the risk of HER2-positive breast cancer but not other subtypes. PLoS One 7(5):e35252. doi: 10.1371/journal.pone.0035252 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Huang HY, Chien CH, Jen KH, Huang HD (2006) RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 34 (Web Server issue):W429–434. doi:  10.1093/nar/gkl333
  20. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Kohli M, Thibodeau SN, Boardman L, Wang L (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319. doi: 10.1186/1471-2164-14-319 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39(2):292–299. doi: 10.1016/j.molcel.2010.05.015 PubMedCrossRefGoogle Scholar
  22. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157. doi: 10.1261/rna.035667.112 PubMedCrossRefGoogle Scholar
  23. Kim DS, Lee Y, Hahn Y (2010) Evidence for bacterial origin of heat shock RNA-1. RNA 16(2):274–279. doi: 10.1261/rna.1879610 PubMedCrossRefGoogle Scholar
  24. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi: 10.1038/nrm2632 PubMedCrossRefGoogle Scholar
  25. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962. doi: 10.1038/onc.2010.568 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kotoglou P, Kalaitzakis A, Vezyraki P, Tzavaras T, Michalis LK, Dantzer F, Jung JU, Angelidis C (2009) Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones 14(4):391–406. doi: 10.1007/s12192-008-0093-6 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610. doi: 10.1038/nrg2843 PubMedGoogle Scholar
  28. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O'Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27. doi: 10.1016/S0092-8674(00)80711-4 PubMedCrossRefGoogle Scholar
  29. Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215. doi: 10.1016/j.molcel.2010.09.027 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Li G, Cai M, Fu D, Chen K, Sun M, Cai Z, Cheng B (2012) Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem 30(6):1481–1490. doi: 10.1159/000343336 Google Scholar
  31. Li T, Spearow J, Rubin CM, Schmid CW (1999) Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 239(2):367–372. doi: 10.1016/S0378-1119(99)00384-4 PubMedCrossRefGoogle Scholar
  32. Lis JT, Mason P, Peng J, Price DH, Werner J (2000) P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 14(7):792–803PubMedGoogle Scholar
  33. Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23(10):1758–1765. doi: 10.1093/nar/23.10.1758 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Liu X, Zou L, Zhu L, Zhang H, Du C, Li Z, Gao C, Zhao X, Bao S, Zheng H (2012) miRNA mediated up-regulation of cochaperone p23 acts as an anti-apoptotic factor in childhood acute lymphoblastic leukemia. Leuk Res 36(9):1098–1104. doi: 10.1016/j.leukres.2012.05.003 Google Scholar
  35. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, Lin HM, Shang CZ, Chen YJ, Min J (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287(19):15874–15885. doi: 10.1074/jbc.M112.340588 PubMedCrossRefGoogle Scholar
  36. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. doi: 10.1038/nature11928 PubMedCrossRefGoogle Scholar
  37. Moseley PL, Wallen ES, McCafferty JD, Flanagan S, Kern JA (1993) Heat stress regulates the human 70-kDa heat-shock gene through the 3'-untranslated region. Am J Physiol 264(6 Pt 1):L533–L537PubMedGoogle Scholar
  38. Nguyen VT, Kiss T, Michels AA, Bensaude O (2001) 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414(6861):322–325. doi: 10.1038/35104581 PubMedCrossRefGoogle Scholar
  39. Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B (1991) Scrambled exons. Cell 64(3):607–613. doi: 10.1016/0092-8674(91)90244-S PubMedCrossRefGoogle Scholar
  40. Oshlag JZ, Devasthanam AS, Tomasi TB (2013) Mild hyperthermia enhances the expression and induces oscillations in the Dicer protein. Int J Hyperthermia 29(1):51–61. doi: 10.3109/02656736.2012.753471 PubMedCrossRefGoogle Scholar
  41. Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX, White RE, Sun X, Giffard RG (2012) miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 45(1):555–563. doi: 10.1016/j.nbd.2011.09.012 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282. doi: 10.1038/nrg3162 PubMedGoogle Scholar
  43. Pelham HR (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3(13):3095–3100PubMedGoogle Scholar
  44. Peterlin BM, Brogie JE, Price DH (2012) 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA 3(1):92–103. doi: 10.1002/wrna.106 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038. doi: 10.1038/nature09144 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119(17):2357–2366. doi: 10.1161/CIRCULATIONAHA.108.814145 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Ritchie W, Flamant S, Rasko JE (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6(6):397–398. doi: 10.1038/nmeth0609-397 PubMedCrossRefGoogle Scholar
  48. Rodriguez-Campos A, Azorin F (2007) RNA is an integral component of chromatin that contributes to its structural organization. PLoS One 2(11):e1182. doi: 10.1371/journal.pone.0001182 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733. doi: 10.1371/journal.pone.0030733 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Scott H, Howarth J, Lee YB, Wong LF, Bantounas I, Phylactou L, Verkade P, Uney JB (2012) MiR-3120 is a mirror microRNA that targets heat shock cognate protein 70 and auxilin messenger RNAs and regulates clathrin vesicle uncoating. J Biol Chem 287(18):14726–14733. doi: 10.1074/jbc.M111.326041 PubMedCrossRefGoogle Scholar
  51. Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3(11):881–886. doi: 10.1038/nmeth954 PubMedCrossRefGoogle Scholar
  52. Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440(7083):556–560. doi: 10.1038/nature04518 PubMedCrossRefGoogle Scholar
  53. Shamovsky I, Nudler E (2009) Isolation and characterization of the heat shock RNA 1. Methods Mol Biol 540:265–279. doi: 10.1007/978-1-59745-558-9_19 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP, Liu JL, Fu YH, Liu XY, Li YX, Zhang YY, Lin SG, Yu XY (2010) miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett 584(16):3592–3600. doi: 10.1016/j.febslet.2010.07.027 PubMedCrossRefGoogle Scholar
  55. Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M, Mandelboim O (2008) Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9(9):1065–1073. doi: 10.1038/ni.1642 PubMedCrossRefGoogle Scholar
  56. Tamura Y, Torigoe T, Kutomi G, Hirata K, Sato N (2012) New paradigm for intrinsic function of heat shock proteins as endogenous ligands in inflammation and innate immunity. Curr Mol Med 12(9):1198–1206. doi: 10.2174/156652412803306710 PubMedCrossRefGoogle Scholar
  57. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39(16):6845–6853. doi: 10.1093/nar/gkr330 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Tranter M, Helsley RN, Paulding WR, McGuinness M, Brokamp C, Haar L, Liu Y, Ren X, Jones WK (2011) Coordinated post-transcriptional regulation of Hsp70.3 gene expression by microRNA and alternative polyadenylation. J Biol Chem 286(34):29828–29837. doi: 10.1074/jbc.M111.221796 PubMedCrossRefGoogle Scholar
  59. Tranter M, Ren X, Forde T, Wilhide ME, Chen J, Sartor MA, Medvedovic M, Jones WK (2010) NF-kappaB driven cardioprotective gene programs; Hsp70.3 and cardioprotection after late ischemic preconditioning. J Mol Cell Cardiol 49(4):664–672. doi: 10.1016/j.yjmcc.2010.07.001 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wang D, Zhang Z, O'Loughlin E, Lee T, Houel S, O'Carroll D, Tarakhovsky A, Ahn NG, Yi R (2012) Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 26(7):693–704. doi: 10.1101/gad.182758.111 PubMedCrossRefGoogle Scholar
  61. Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N, Sun F, Fan Q (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38(16):5366–5383. doi: 10.1093/nar/gkq285 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361. doi: 10.1016/j.tcb.2011.04.001 PubMedCrossRefGoogle Scholar
  63. Wassarman DA, Steitz JA (1991) Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol 11(7):3432–3445PubMedCentralPubMedGoogle Scholar
  64. Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259(7):4501–4513PubMedGoogle Scholar
  65. Wilmink GJ, Roth CL, Ibey BL, Ketchum N, Bernhard J, Cerna CZ, Roach WP (2010) Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones 15(6):1027–1038. doi: 10.1007/s12192-010-0189-7 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120(Pt 17):3045–3052. doi: 10.1242/jcs.010728 PubMedCrossRefGoogle Scholar
  67. Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106(14):5569–5574. doi: 10.1073/pnas.0810738106 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Yakovchuk P, Goodrich JA, Kugel JF (2011) B2 RNA represses TFIIH phosphorylation of RNA polymerase II. Transcription 2(1):45–49. doi: 10.4161/trns.2.1.14306 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13(4):486–491. doi: 10.1038/nm1569 PubMedCrossRefGoogle Scholar
  70. Yang Z, Zhu Q, Luo K, Zhou Q (2001) The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414(6861):317–322. doi: 10.1038/35104575 PubMedCrossRefGoogle Scholar
  71. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674. doi: 10.1016/j.molcel.2010.03.021 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Yin C, Salloum FN, Kukreja RC (2009) A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res 104(5):572–575. doi: 10.1161/CIRCRESAHA.108.193250 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Yin C, Wang X, Kukreja RC (2008) Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia–reperfusion in mice. FEBS Lett 582(30):4137–4142. doi: 10.1016/j.febslet.2008.11.014 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Yu J, Liu F, Yin P, Zhu X, Cheng G, Wang N, Lu A, Luan W, Zhang N, Li J, Guo K, Yin Y, Wang H, Xu J (2011) Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine. Funct Integr Genomics 11(2):203–213. doi: 10.1007/s10142-010-0198-8 PubMedCrossRefGoogle Scholar
  75. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451(7175):202–206. doi: 10.1038/nature06468 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Yuan J, Ma H, Gong H, Zhou N, Liang Y, Niu Y, Zou Y (2010) MicroRNA-378, a novel regulator of heat shock transcription factor-1, involves development of cardiac hypertrophy. World Congress Of Cardiology, BeijingGoogle Scholar

Copyright information

© Cell Stress Society International 2013

Authors and Affiliations

  1. 1.Anvil BiosciencesMenlo ParkUSA
  2. 2.Division of Cancer PreventionCancer Prevention Fellowship ProgramRockvilleUSA
  3. 3.Laboratory of Human CarcinogenesisCenter for Cancer ResearchBethesdaUSA

Personalised recommendations