Skip to main content
Log in

Inflammatory stress and sarcomagenesis: a vicious interplay

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Chronic inflammation represents one of the hallmarks of cancer, but its role in sarcomagenesis has long been overlooked. Sarcomas are a rare and heterogeneous group of tumors of mesenchymal origin accounting for less than 1 % of cancers in adults but 21 % of cancers in the pediatric population. Sarcomas are associated with bad prognosis, and their management requires a multidisciplinary team approach. Several lines of evidence indicate that inflammation has been implicated in sarcomagenesis leading to the activation of the key transcription factors HIF-1, NF- κB, and STAT-3 involved in a complex inflammatory network. In the past years, an increasing number of new targets have been identified in the treatment of sarcomas leading to the development of new drugs that aim to interrupt the vicious connection between inflammation and sarcomagenesis. This article makes a brief overview of preclinical and clinical evidence of the molecular pathways involved in the inflammatory stress response in sarcomagenesis and the most targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abraham J, Nelon LD, Kubicek CB et al. (2011) Preclinical testing of erlotinib in a transgenic alveolar rhabdomyosarcoma mouse model. Sarcoma 2011:130484. doi:10.1155/2011/130484

  • Aggarwal BB, Gehlot P (2009) Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9:351–369

    PubMed  CAS  Google Scholar 

  • Agulnik M (2012) New developments in mammalian target of rapamycin inhibitors for the treatment of sarcoma. Cancer 118:1486–1497

    PubMed  CAS  Google Scholar 

  • Akimoto R, Pawankar R, Yagi T et al (2000) Acquired and congenital cholesteatoma: determination of tumor necrosis factor-alpha, intercellular adhesion molecule-1, interleukin-1-alpha and lymphocyte functional antigen-1 in the inflammatory process. ORL J Otorhinolaryngol Relat Spec 62:257–265

    PubMed  CAS  Google Scholar 

  • Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21:1714–1719

    PubMed  CAS  Google Scholar 

  • Arlt A, Schafer H (2011) Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol 90:545–552

    PubMed  CAS  Google Scholar 

  • Atai NA, Bansal M, Lo C et al (2011) Osteopontin is up-regulated and associated with neutrophil and macrophage infiltration in glioblastoma. Immunology 132:39–48

    PubMed  CAS  Google Scholar 

  • Bache M, Kappler M, Wichmann H et al (2010) Elevated tumor and serum levels of the hypoxia-associated protein osteopontin are associated with prognosis for soft tissue sarcoma patients. BMC Cancer 10:132

    PubMed  Google Scholar 

  • Bai Y, Li J, Fang B et al (2012) Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res 72:2501–2511

    PubMed  CAS  Google Scholar 

  • Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40

    PubMed  CAS  Google Scholar 

  • Benassi MS, Gamberi G, Magagnoli G et al (2001) Metalloproteinase expression and prognosis in soft tissue sarcomas. Ann Oncol 12:75–80

    PubMed  CAS  Google Scholar 

  • Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    PubMed  CAS  Google Scholar 

  • Bruynzeel AM, Niessen HW, Bronzwaer JG et al (2007) The effect of monohydroxyethylrutoside on doxorubicin-induced cardiotoxicity in patients treated for metastatic cancer in a phase II study. Br J Cancer 97:1084–1089

    PubMed  CAS  Google Scholar 

  • Butrynski JE, D'Adamo DR, Hornick JL et al (2010) Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med 363:1727–1733

    PubMed  CAS  Google Scholar 

  • Butz H, Liko I, Czirjak S et al (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191

    PubMed  CAS  Google Scholar 

  • Calvert GT, Randall RL, Jones KB et al (2012) At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma 2012:152382. doi:10.1155/2012/152382

  • Cancian L, Hansen A, Boshoff C (2013) Cellular origin of Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus-induced cell reprogramming. Trends Cell Biol pii: S0962-8924(13)00055-X. doi:10.1016/j.tcb.2013.04.001

  • Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79–S84

    PubMed  Google Scholar 

  • Cappello F, Caramori G, Campanella C et al (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS ONE 6:e28200

    PubMed  CAS  Google Scholar 

  • Carmody Soni EE, Miller BJ, Scarborough MT et al (2011) Cyclooxygenase-2 expression is not associated with clinical outcome in synovial sarcoma. Oncol Rep 26:1513–1517

    PubMed  Google Scholar 

  • Castilla MA, Moreno-Bueno G, Romero-Perez L et al (2011) Micro-RNA signature of the epithelial–mesenchymal transition in endometrial carcinosarcoma. J Pathol 223:72–80

    PubMed  CAS  Google Scholar 

  • Castro-Gamero AM, Borges KS, Dass V et al (2012) Inhibition of nuclear factor-kappaB by dehydroxymethylepoxyquinomicin induces schedule-dependent chemosensitivity to anticancer drugs and enhances chemoinduced apoptosis in osteosarcoma cells. Anticancer Drugs 23:638–650

    PubMed  CAS  Google Scholar 

  • Chaturvedi MM, Sung B, Yadav VR et al (2011) NF-κB addiction and its role in cancer: 'one size does not fit all'. Oncogene 30:1615–1630

    PubMed  CAS  Google Scholar 

  • Chen YJ, Wei YY, Chen HT et al (2009) Osteopontin increases migration and MMP-9 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Physiol 221:98–108

    PubMed  CAS  Google Scholar 

  • Chien Y, Kim S, Bumeister R et al (2006) RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127:157–170

    PubMed  CAS  Google Scholar 

  • Choi JK, Choi BH, Ha Y et al (2007) Signal transduction pathways of GM-CSF in neural cell lines. Neurosci Lett 420:217–222

    PubMed  CAS  Google Scholar 

  • Chou SD, Prince T, Gong J et al (2012) mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS ONE 7:e39679

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    PubMed  CAS  Google Scholar 

  • Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    PubMed  CAS  Google Scholar 

  • Curran CS, Evans MD, Bertics PJ (2011) GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation, and growth factor production for enhanced tumor cell proliferation. J Immunol 187:1254–1263

    PubMed  CAS  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    PubMed  CAS  Google Scholar 

  • Dickson MA, Okuno SH, Keohan ML et al (2013) Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol 24:252–257

    PubMed  CAS  Google Scholar 

  • Douglas JL, Gustin JK, Moses AV et al (2010) Kaposi sarcoma pathogenesis: a triad of viral infection. Oncogenesis and chronic inflammation. Transl Biomed 1:172

    PubMed  Google Scholar 

  • Downward J (2009) Cancer: a tumour gene's fatal flaws. Nat Geosci 462:44–45

    CAS  Google Scholar 

  • Edris B, Willingham SB, Weiskopf K et al (2013) Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth. Proc Natl Acad Sci U S A 110:3501–3506

    PubMed  CAS  Google Scholar 

  • Efeyan A, Sabatini DM (2010) mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 22:169–176

    PubMed  CAS  Google Scholar 

  • Enders GH (2010) Gauchos and ochos: a Wee1-Cdk tango regulating mitotic entry. Cell Div 5:12. doi:10.1186/1747-1028-5-12

    PubMed  Google Scholar 

  • Engin F, Bertin T, Ma O et al (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470

    PubMed  CAS  Google Scholar 

  • Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452

    PubMed  CAS  Google Scholar 

  • Feldman AL, Pak H, Yang JC et al (2001) Serum endostatin levels are elevated in patients with soft tissue sarcoma. Cancer 91:1525–1529

    PubMed  CAS  Google Scholar 

  • Felgenhauer JL, Nieder ML, Krailo MD et al (2013) A pilot study of low-dose anti-angiogenic chemotherapy in combination with standard multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma family of tumors: A Children's Oncology Group (COG) Phase II study NCT00061893. Pediatr Blood Cancer 60:409–414

    PubMed  Google Scholar 

  • Fernandez M, Pino AM, Figueroa P et al (2010) The increased expression of receptor activator of nuclear-kappaB ligand (RANKL) of multiple myeloma bone marrow stromal cells is inhibited by the bisphosphonate ibandronate. J Cell Biochem 111:130–137

    PubMed  CAS  Google Scholar 

  • Ferrari A, Sultan I, Huang TT et al (2011) Soft tissue sarcoma across the age spectrum: a population-based study from the Surveillance Epidemiology and End Results database. Pediatr Blood Cancer 57:943–949

    PubMed  Google Scholar 

  • Francis P, Namlos HM, Muller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73

    PubMed  Google Scholar 

  • Frei K, Piani D, Malipiero UV et al (1992) Granulocyte-macrophage colony-stimulating factor (GM-CSF) production by glioblastoma cells. Despite the presence of inducing signals GM-CSF is not expressed in vivo. J Immunol 148:3140–3146

    PubMed  CAS  Google Scholar 

  • Friedman E (2011) The role of mirk kinase in sarcomas. Sarcoma 2011:260757. doi:10.1155/2011/260757

  • Friedrichs N, Kuchler J, Endl E et al (2008) Insulin-like growth factor-1 receptor acts as a growth regulator in synovial sarcoma. J Pathol 216:428–439

    PubMed  CAS  Google Scholar 

  • Fu W, Ma L, Chu B et al (2011) The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol Cancer Ther 10:1018–1027

    PubMed  CAS  Google Scholar 

  • Fukuda T, Yamaguchi T, Yamaki T et al (2001) Ovarian fibrosarcoma producing multiple cytokines. Pathol Int 51:739–743

    PubMed  CAS  Google Scholar 

  • Funahashi Y, Hernandez SL, Das I et al (2008) A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res 68:4727–4735

    PubMed  CAS  Google Scholar 

  • Garcia K, Stumpff J, Duncan T et al (2009) Tyrosines in the kinesin-5 head domain are necessary for phosphorylation by Wee1 and for mitotic spindle integrity. Curr Biol 19:1670–1676

    PubMed  CAS  Google Scholar 

  • Gendy AS, Lipskar A, Glick RD et al (2011) Selective inhibition of cyclooxygenase-2 suppresses metastatic disease without affecting primary tumor growth in a murine model of Ewing sarcoma. J Pediatr Surg 46:108–114

    PubMed  Google Scholar 

  • Guan H, Zhou Z, Gallick GE et al (2008) Targeting Lyn inhibits tumor growth and metastasis in Ewing's sarcoma. Mol Cancer Ther 7:1807–1816

    PubMed  CAS  Google Scholar 

  • Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11:353–361

    PubMed  CAS  Google Scholar 

  • Guzhova IV, Darieva ZA, Melo AR et al (1997) Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2:132–139

    PubMed  CAS  Google Scholar 

  • Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006:re13

    PubMed  Google Scholar 

  • Hafeez BB, Ahmed S, Wang N et al (2006) Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-kappaB. Toxicol Appl Pharmacol 216:11–19

    PubMed  Google Scholar 

  • Hahnel A, Wichmann H, Greither T et al (2012) Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients. BMC Cancer 12:131

    PubMed  CAS  Google Scholar 

  • Hashimoto O, Shinkawa M, Torimura T et al (2006) Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line. BMC Cancer 6:292

    PubMed  Google Scholar 

  • He S, Li P, Chen CH et al (2012) Effective oncolytic vaccinia therapy for human sarcomas. J Surg Res 175:e53–e60

    PubMed  Google Scholar 

  • Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    PubMed  CAS  Google Scholar 

  • Henderson MT, Hollmig ST (2012) Malignant fibrous histiocytoma: changing perceptions and management challenges. J Am Acad Dermatol 67:1335–1341

    PubMed  Google Scholar 

  • Henderson B, Pockley AG (2005) Molecular chaperones and cell signalling. Cambridge University Press, Cambridge

    Google Scholar 

  • Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    PubMed  CAS  Google Scholar 

  • Hillegass JM, Shukla A, MacPherson MB et al (2010) Utilization of gene profiling and proteomics to determine mineral pathogenicity in a human mesothelial cell line (LP9/TERT-1). J Toxicol Environ Health A 73:423–436

    PubMed  CAS  Google Scholar 

  • Hirama M, Takahashi F, Takahashi K et al (2003) Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 198:107–117

    PubMed  CAS  Google Scholar 

  • Hoki Y, Hiraku Y, Ma N et al (2007a) iNOS-dependent DNA damage in patients with malignant fibrous histiocytoma in relation to prognosis. Cancer Sci 98:163–168

    PubMed  CAS  Google Scholar 

  • Hoki Y, Murata M, Hiraku Y et al (2007b) 8-Nitroguanine as a potential biomarker for progression of malignant fibrous histiocytoma, a model of inflammation-related cancer. Oncol Rep 18:1165–1169

    PubMed  CAS  Google Scholar 

  • Hönicke AS, Ender SA, Radons J (2012) Combined administration of EGCG and IL-1 receptor antagonist efficiently downregulates IL-1-induced tumorigenic factors in U-2 OS human osteosarcoma cells. Int J Oncol 41:753–758

    PubMed  Google Scholar 

  • Huang X, Choi JK, Park SR et al (2007) GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci Res 58:50–57

    PubMed  CAS  Google Scholar 

  • Ishii E, Ohga S, Aoki T et al (1991) Prognosis of children with virus-associated hemophagocytic syndrome and malignant histiocytosis: correlation with levels of serum interleukin-1 and tumor necrosis factor. Acta Haematol 85:93–99

    PubMed  CAS  Google Scholar 

  • Ivanov SV, Ivanova AV, Goparaju CM et al (2009) Tumorigenic properties of alternative osteopontin isoforms in mesothelioma. Biochem Biophys Res Commun 382:514–518

    PubMed  CAS  Google Scholar 

  • Jacobs H, Bast A, Peters GJ et al (2011) The semisynthetic flavonoid monoHER sensitises human soft tissue sarcoma cells to doxorubicin-induced apoptosis via inhibition of nuclear factor-kappaB. Br J Cancer 104:437–440

    PubMed  CAS  Google Scholar 

  • Jin K, Park S, Ewton DZ et al (2007) The survival kinase Mirk/Dyrk1B is a downstream effector of oncogenic K-ras in pancreatic cancer. Cancer Res 67:7247–7255

    PubMed  CAS  Google Scholar 

  • Keller SA, Hernandez-Hopkins D, Vider J et al (2006) NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 107:3295–3302

    PubMed  CAS  Google Scholar 

  • Koga K, Nabeshima K, Nishimura N et al (2005) Microvessel density and HIF-1alpha expression correlate with malignant potential in fibrohistiocytic tumors. Eur J Dermatol 15:465–469

    PubMed  Google Scholar 

  • Koga K, Nabeshima K, Aoki M et al (2007) Emmprin in epithelioid sarcoma: expression in tumor cell membrane and stimulation of MMP-2 production in tumor-associated fibroblasts. Int J Cancer 120:761–768

    PubMed  CAS  Google Scholar 

  • Kundu JK, Surh YJ (2012) Emerging avenues linking inflammation and cancer. Free Radic Biol Med 52:2013–2037

    PubMed  CAS  Google Scholar 

  • Kushlinskii NE, Babkina IV, Solov'ev YN et al (2000) Vascular endothelium growth factor and angiogenin in the serum of patients with osteosarcoma and Ewing's tumor. Bull Exp Biol Med 130:691–693

    PubMed  CAS  Google Scholar 

  • Ladetto M, Vallet S, Trojan A et al (2005) Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome. Blood 105:4784–4791

    PubMed  CAS  Google Scholar 

  • Lahat G, Lazar A, Lev D (2008) Sarcoma epidemiology and etiology: potential environmental and genetic factors. Surg Clin North Am 88:451–481

    PubMed  Google Scholar 

  • Lahat G, Zhang P, Zhu QS et al (2011) The expression of c-Met pathway components in unclassified pleomorphic sarcoma/malignant fibrous histiocytoma (UPS/MFH): a tissue microarray study. Histopathology 59:556–561

    PubMed  Google Scholar 

  • Lambert LA, Qiao N, Hunt KK et al (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 68:7966–7974

    PubMed  CAS  Google Scholar 

  • Lazar AJ, Das P, Tuvin D et al (2007) Angiogenesis-promoting gene patterns in alveolar soft part sarcoma. Clin Cancer Res 13:7314–7321

    PubMed  CAS  Google Scholar 

  • Lee HJ, Kim SA, Lee HJ et al (2010) Paeonol oxime inhibits bFGF-induced angiogenesis and reduces VEGF levels in fibrosarcoma cells. PLoS ONE 5:e12358

    PubMed  Google Scholar 

  • Lee J, Lee J, Yu H et al (2011) Differential dependency of human cancer cells on vascular endothelial growth factor-mediated autocrine growth and survival. Cancer Lett 309:145–150

    PubMed  CAS  Google Scholar 

  • Li G, Kawashima H, Ogose A et al (2011) Efficient virotherapy for osteosarcoma by telomerase-specific oncolytic adenovirus. J Cancer Res Clin Oncol 137:1037–1051

    PubMed  Google Scholar 

  • Li G, Cai M, Fu D et al (2012a) Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem 30:1481–1490

    PubMed  CAS  Google Scholar 

  • Li Y, Zhang J, Ma D et al (2012b) Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J 279:2247–2259

    PubMed  CAS  Google Scholar 

  • Liu X, Newton RC, Scherle PA (2010) Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med 16:37–45

    PubMed  CAS  Google Scholar 

  • Liu B, Qu L, Yang Z et al (2012) Cyclooxygenase-2 inhibitors induce anoikis in osteosarcoma via PI3K/Akt pathway. Med Hypotheses 79:98–100

    PubMed  CAS  Google Scholar 

  • Luke JJ, D'Adamo DR, Dickson MA et al (2012) The cyclin-dependent kinase inhibitor flavopiridol potentiates doxorubicin efficacy in advanced sarcomas: preclinical investigations and results of a phase I dose-escalation clinical trial. Clin Cancer Res 18:2638–2647

    PubMed  CAS  Google Scholar 

  • Lund SA, Giachelli CM, Scatena M (2009) The role of osteopontin in inflammatory processes. J Cell Commun Signal 3:311–322

    PubMed  Google Scholar 

  • Macario AJ, Conway de Macario E (2007) Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci 1113:178–191

    PubMed  CAS  Google Scholar 

  • Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10:369–373

    PubMed  CAS  Google Scholar 

  • Martin Liberal J, Lagares-Tena L, Sainz-Jaspeado M et al. (2012) Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012:626094. doi:10.1155/2012/626094

  • Martinelli S, McDowell HP, Vigne SD et al (2009) RAS signaling dysregulation in human embryonal Rhabdomyosarcoma. Genes, Chromosomes Cancer 48:975–982

    PubMed  CAS  Google Scholar 

  • Matushansky I, Charytonowicz E, Mills J et al (2009) MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st century. Expert Rev Anticancer Ther 9:1135–1144

    PubMed  CAS  Google Scholar 

  • McMeekin DS, Sill MW, Darcy KM et al (2012) A phase II trial of thalidomide in patients with refractory uterine carcinosarcoma and correlation with biomarkers of angiogenesis: a Gynecologic Oncology Group study. Gynecol Oncol 127:356–361

    PubMed  CAS  Google Scholar 

  • Melhem MF, Meisler AI, Saito R et al (1993) Cytokines in inflammatory malignant fibrous histiocytoma presenting with leukemoid reaction. Blood 82:2038–2044

    PubMed  CAS  Google Scholar 

  • Menczer J, Schreiber L, Sukmanov O et al (2010) COX-2 expression in uterine carcinosarcoma. Acta Obstet Gynecol Scand 89:120–125

    PubMed  Google Scholar 

  • Mollapour M, Tsutsumi S, Neckers L (2010) Hsp90 phosphorylation, Wee1 and the cell cycle. Cell Cycle 9:2310–2316

    PubMed  CAS  Google Scholar 

  • Moon A, Bacchini P, Bertoni F et al (2010) Expression of heat shock proteins in osteosarcomas. Pathology 42:421–425

    PubMed  CAS  Google Scholar 

  • Mori K, Berreur M, Blanchard F et al (2007) Receptor activator of nuclear factor-kappaB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep 18:1365–1371

    PubMed  CAS  Google Scholar 

  • Multhoff G, Molls M, Radons J (2012) Chronic inflammation in cancer development. Front Immunol 2:98. doi:10.3389/fimmu.2011.00098

    PubMed  Google Scholar 

  • Nakayama Y, Kato N, Nakajima Y et al (2004) Effect of TNF-alpha on human osteosarcoma cell line Saos2–TNF-alpha regulation of bone sialoprotein gene expression in Saos2 osteoblast-like cells. Cell Biol Int 28:653–660

    PubMed  CAS  Google Scholar 

  • Ng PK, Tsui SK, Lau CP et al (2010) CCAAT/enhancer binding protein beta is up-regulated in giant cell tumor of bone and regulates RANKL expression. J Cell Biochem 110:438–446

    PubMed  CAS  Google Scholar 

  • Paudel N, Sadagopan S, Chakraborty S et al (2012) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with multifunctional angiogenin to utilize its antiapoptotic functions. J Virol 86:5974–5991

    PubMed  CAS  Google Scholar 

  • Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    PubMed  CAS  Google Scholar 

  • Pollard PJ, Briere JJ, Alam NA et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    PubMed  CAS  Google Scholar 

  • Prakash O, Swamy OR, Peng X et al (2005) Activation of Src kinase Lyn by the Kaposi sarcoma-associated herpesvirus K1 protein: implications for lymphomagenesis. Blood 105:3987–3994

    PubMed  CAS  Google Scholar 

  • Prieur A, Tirode F, Cohen P et al (2004) EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 24:7275–7283

    PubMed  CAS  Google Scholar 

  • Quesada J, Amato R (2012) The molecular biology of soft-tissue sarcomas and current trends in therapy. Sarcoma 2012:849456. doi:10.1155/2012/849456

  • Radons J, Bosserhoff AK, Grassel S et al (2006a) p38MAPK mediates IL-1-induced down-regulation of aggrecan gene expression in human chondrocytes. Int J Mol Med 17:661–668

    PubMed  CAS  Google Scholar 

  • Radons J, Falk W, Schubert TE (2006b) Interleukin-10 does not affect IL-1-induced interleukin-6 and metalloproteinase production in human chondrosarcoma cells, SW1353. Int J Mol Med 17:377–383

    PubMed  CAS  Google Scholar 

  • Rao PK, Missiaglia E, Shields L et al (2010) Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J 24:3427–3437

    PubMed  CAS  Google Scholar 

  • Rappa F, Farina F, Zummo G et al (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32:5139–5150

    PubMed  CAS  Google Scholar 

  • Raut CP, Nawrocki S, Lashinger LM et al (2004) Celecoxib inhibits angiogenesis by inducing endothelial cell apoptosis in human pancreatic tumor xenografts. Cancer Biol Ther 3:1217–1224

    PubMed  CAS  Google Scholar 

  • Roma J, Masia A, Reventos J et al (2011) Notch pathway inhibition significantly reduces rhabdomyosarcoma invasiveness and mobility in vitro. Clin Cancer Res 17:505–513

    PubMed  CAS  Google Scholar 

  • Ross KA, Smyth NA, Murawski CD et al. (2013) The biology of ewing sarcoma. ISRN Oncol 2013:759725. doi: 10.1155/2013/759725

  • Rubin AI, Stiller MJ (2002) A listing of skin conditions exhibiting the koebner and pseudo-koebner phenomena with eliciting stimuli. J Cutan Med Surg 6:29–34

    PubMed  Google Scholar 

  • Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1741

    PubMed  CAS  Google Scholar 

  • Rutkowski P, Kaminska J, Kowalska M et al (2003) Cytokine and cytokine receptor serum levels in adult bone sarcoma patients: correlations with local tumor extent and prognosis. J Surg Oncol 84:151–159

    PubMed  CAS  Google Scholar 

  • Sadagopan S, Sharma-Walia N, Veettil MV et al (2009) Kaposi's sarcoma-associated herpesvirus upregulates angiogenin during infection of human dermal microvascular endothelial cells, which induces 45S rRNA synthesis, antiapoptosis, cell proliferation, migration, and angiogenesis. J Virol 83:3342–3364

    PubMed  CAS  Google Scholar 

  • Sadagopan S, Veettil MV, Chakraborty S et al (2012) Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene 31:4835–4847

    PubMed  CAS  Google Scholar 

  • Sastry KV, Sharma SC, Mann SB et al (1999) Aural cholesteatoma: role of tumor necrosis factor-alpha in bone destruction. Am J Otol 20:158–161

    PubMed  CAS  Google Scholar 

  • Savage SA, Mirabello L (2011) Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma 2011.548151. doi:10.1155/2011/548151

  • Schoffski P, Adkins D, Blay J, Gil T, Elias AD, Rutkowski P, Pennock GK, Youssoufian H, Zojwalla NJ, Willey R, Grebennik DO (2011) Phase II trial of anti-IGF-IR antibody cixutumumab in patients with advanced or metastatic soft-tissue sarcoma and Ewing family of tumors. J.Clin.Oncol. 29(Suppl.):10004. http://meeting.ascopubs.org/cgi/content/abstract/29-15_suppl/10004?sid=a6464a16-77fd-4537-baa7-c98ad3b1e0bc

    Google Scholar 

  • Scotlandi K, Avnet S, Benini S et al (2002) Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing's sarcoma cells. Int J Cancer 101:11–16

    PubMed  CAS  Google Scholar 

  • Sharma-Walia N, Raghu H, Sadagopan S et al (2006) Cyclooxygenase 2 induced by Kaposi's sarcoma-associated herpesvirus early during in vitro infection of target cells plays a role in the maintenance of latent viral gene expression. J Virol 80:6534–6552

    PubMed  CAS  Google Scholar 

  • Sharma-Walia N, Paul AG, Bottero V et al (2010) Kaposi's sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog 6:e1000777

    PubMed  Google Scholar 

  • Silva I, Branco JC (2011) Rank/Rankl/opg: literature review. Acta Reumatol Port 36:209–218

    PubMed  CAS  Google Scholar 

  • Simonart T, Van Vooren JP (2002) Interleukin-1 beta increases the BCL-2/BAX ratio in Kaposi's sarcoma cells. Cytokine+ 19:259–266

    PubMed  CAS  Google Scholar 

  • Singh M, Pandey A, Karikari CA et al (2010) Cell cycle inhibition and apoptosis induced by curcumin in Ewing sarcoma cell line SK-NEP-1. Med Oncol 27:1096–1101

    PubMed  CAS  Google Scholar 

  • Sivakumar R, Sharma-Walia N, Raghu H et al (2008) Kaposi's sarcoma-associated herpesvirus induces sustained levels of vascular endothelial growth factors A and C early during in vitro infection of human microvascular dermal endothelial cells: biological implications. J Virol 82:1759–1776

    PubMed  CAS  Google Scholar 

  • Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    PubMed  CAS  Google Scholar 

  • Stettner MR, Wang W, Nabors LB et al (2005) Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res 65:5535–5543

    PubMed  CAS  Google Scholar 

  • Stiller CA, Trama A, Serraino D et al (2013) Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer 49:684–685

    PubMed  CAS  Google Scholar 

  • Subramanian S, Lui WO, Lee CH et al (2008) MicroRNA expression signature of human sarcomas. Oncogene 27:2015–2026

    PubMed  CAS  Google Scholar 

  • Suhasini AN, Brosh RM Jr (2013) DNA helicases associated with genetic instability, cancer, and aging. Adv Exp Med Biol 767:123–144

    PubMed  CAS  Google Scholar 

  • Sun SG, Lau YS, Itonaga I et al (2006) Bone stromal cells in pagetic bone and Paget's sarcoma express RANKL and support human osteoclast formation. J Pathol 209:114–120

    PubMed  CAS  Google Scholar 

  • Takahashi F, Akutagawa S, Fukumoto H et al (2002) Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 98:707–712

    PubMed  CAS  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ et al (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    PubMed  CAS  Google Scholar 

  • Tanaka M, Setoguchi T, Hirotsu M et al (2009) Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100:1957–1965

    PubMed  CAS  Google Scholar 

  • Taulli R, Bersani F, Foglizzo V et al (2009) The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest 119:2366–2378

    PubMed  CAS  Google Scholar 

  • Taylor R, Knowles HJ, Athanasou NA (2011) Ewing sarcoma cells express RANKL and support osteoclastogenesis. J Pathol 225:195–202

    PubMed  CAS  Google Scholar 

  • Tili E, Michaille JJ, Wernicke D et al (2011) Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci U S A 108:4908–4913

    PubMed  CAS  Google Scholar 

  • Tomlinson IP, Alam NA, Rowan AJ et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    PubMed  CAS  Google Scholar 

  • Toro JR, Travis LB, Wu HJ et al (2006) Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: an analysis of 26,758 cases. Int J Cancer 119:2922–2930

    PubMed  CAS  Google Scholar 

  • Trieb K, Gerth R, Windhager R et al (2000a) Serum antibodies against the heat shock protein 60 are elevated in patients with osteosarcoma. Immunobiology 201:368–376

    PubMed  CAS  Google Scholar 

  • Trieb K, Kohlbeck R, Lang S et al (2000b) Heat shock protein 72 expression in chondrosarcoma correlates with differentiation. J Cancer Res Clin Oncol 126:667–670

    PubMed  CAS  Google Scholar 

  • Uozaki H, Ishida T, Kakiuchi C et al (2000) Expression of heat shock proteins in osteosarcoma and its relationship to prognosis. Pathol Res Pract 196:665–673

    PubMed  CAS  Google Scholar 

  • Voronov E, Carmi Y, Apte RN (2007) Role of IL-1-mediated inflammation in tumor angiogenesis. Adv Exp Med Biol 601:265–270

    PubMed  Google Scholar 

  • Wagner AJ, Goldberg JM, Dubois SG et al (2012) Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer 118:5894–5902

    PubMed  CAS  Google Scholar 

  • Wang Y, Chen L, Hagiwara N et al (2010) Regulation of heat shock protein 60 and 72 expression in the failing heart. J Mol Cell Cardiol 48:360–366

    PubMed  CAS  Google Scholar 

  • Wong TF, Takeda T, Li B et al (2011) Curcumin disrupts uterine leiomyosarcoma cells through AKT-mTOR pathway inhibition. Gynecol Oncol 122:141–148

    PubMed  CAS  Google Scholar 

  • Wu SP, Huang TC, Lin CC et al (2012) Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 10:1852–1872

    PubMed  CAS  Google Scholar 

  • Xia JJ, Pei LB, Zhuang JP et al (2010) Celecoxib inhibits beta-catenin-dependent survival of the human osteosarcoma MG-63 cell line. J Int Med Res 38:1294–1304

    PubMed  CAS  Google Scholar 

  • Xie X, Ghadimi MP, Young ED et al (2011) Combining EGFR and mTOR blockade for the treatment of epithelioid sarcoma. Clin Cancer Res 17:5901–5912

    PubMed  CAS  Google Scholar 

  • Yan D, Dong XE, Chen X et al (2009) MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem 284:29596–29604

    PubMed  CAS  Google Scholar 

  • Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17:666–681

    PubMed  CAS  Google Scholar 

  • Yang C, Ji D, Weinstein EJ et al (2010) The kinase Mirk is a potential therapeutic target in osteosarcoma. Carcinogenesis 31:552–558

    PubMed  CAS  Google Scholar 

  • Ye F, Lattif AA, Xie J et al (2012) Nutlin-3 induces apoptosis, disrupts viral latency and inhibits expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell Cycle 11:1393–1399

    PubMed  CAS  Google Scholar 

  • Yetiser S, Satar B, Aydin N (2002) Expression of epidermal growth factor, tumor necrosis factor-alpha, and interleukin-1alpha in chronic otitis media with or without cholesteatoma. Otol Neurotol 23:647–652

    PubMed  Google Scholar 

  • Yoo J, Robinson RA, Lee JY (1999) H-ras and K-ras gene mutations in primary human soft tissue sarcoma: concomitant mutations of the ras genes. Mod Pathol 12:775–780

    PubMed  CAS  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    PubMed  CAS  Google Scholar 

  • Zanini C, Pulera F, Carta F et al (2008) Proteomic identification of heat shock protein 27 as a differentiation and prognostic marker in neuroblastoma but not in Ewing's sarcoma. Virchows Arch 452:157–167

    PubMed  CAS  Google Scholar 

  • Zha J, Lackner MR (2010) Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy. Clin Cancer Res 16:2512–2517

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang N, Dai B et al (2008) FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 68:8733–8742

    PubMed  CAS  Google Scholar 

  • Zhang P, Bill K, Liu J et al (2012) MiR-155 is a liposarcoma oncogene that targets casein kinase-1alpha and enhances beta-catenin signaling. Cancer Res 72:1751–1762

    PubMed  CAS  Google Scholar 

  • Zibat A, Missiaglia E, Rosenberger A et al (2010) Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene 29:6323–6330

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Radons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radons, J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress and Chaperones 19, 1–13 (2014). https://doi.org/10.1007/s12192-013-0449-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0449-4

Keywords

Navigation