Skip to main content
Log in

Acute heat stress prior to downhill running may enhance skeletal muscle remodeling

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat shock proteins (HSPs) are chaperones that are known to have important roles in facilitating protein synthesis, protein assembly and cellular protection. While HSPs are known to be induced by damaging exercise, little is known about how HSPs actually mediate skeletal muscle adaption to exercise. The purpose of this study was to determine the effects of a heat shock pretreatment and the ensuing increase in HSP expression on early remodeling and signaling (2 and 48 h) events of the soleus (Sol) muscle following a bout of downhill running. Male Wistar rats (10 weeks old) were randomly assigned to control, eccentric exercise (EE; downhill running) or heat shock + eccentric exercise (HS; 41°C for 20 min, 48 h prior to exercise) groups. Markers of muscle damage, muscle regeneration and intracellular signaling were assessed. The phosphorylation (p) of HSP25, Akt, p70s6k, ERK1/2 and JNK proteins was also performed. As expected, following exercise the EE group had increased creatine kinase (CK; 2 h) and mononuclear cell infiltration (48 h) compared to controls. The EE group had an increase in p-HSP25, but there was no change in HSP72 expression, total protein concentration, or neonatal MHC content. Additionally, the EE group had increased p-p70s6k, p-ERK1/2, and p-JNK (2 h) compared to controls; however no changes in p-Akt were seen. In contrast, the HS group had reduced CK (2 h) and mononuclear cell infiltration (48 h) compared to EE. Moreover, the HS group had increased HSP72 content (2 and 48 h), total protein concentration (48 h), neonatal MHC content (2 and 48 h), p-HSP25 and p-p70s6k (2 h). Lastly, the HS group had reduced p-Akt (48 h) and p-ERK1/2 (2 h). These data suggest that heat shock pretreatment and/or the ensuing HSP72 response may protect against muscle damage, and enhance increases in total protein and neonatal MHC content following exercise. These changes appear to be independent of Akt and MAPK signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armand AS, Launay T, Gaspera BD, Charbonnier F, Gallien CL, Chanoine C (2003) Effects of eccentric treadmill running on mouse soleus: degeneration/regeneration studied with Myf-5 and MyoD probes. Acta Physiol Scand 179(1):75–84

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RB, Ogilvie RW, Schwane JA (1983) Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 54(1):80–93

    PubMed  CAS  Google Scholar 

  • Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276(1 Pt 1):C120–C127

    PubMed  CAS  Google Scholar 

  • Beck SC, De Maio A (1994) Stabilization of protein synthesis in thermotolerant cells during heat shock. Association of heat shock protein-72 with ribosomal subunits of polysomes. J Biol Chem 269(34):21803–21811

    PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248(4957):850–854

    Article  PubMed  CAS  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019. doi:10.1038/ncb1101-1014ncb1101-1014

    Article  PubMed  CAS  Google Scholar 

  • Bombardier E, Vigna C, Iqbal S, Tiidus PM, Tupling AR (2009) Effects of ovarian sex hormones and downhill running on fiber-type-specific HSP70 expression in rat soleus. J Appl Physiol 106(6):2009–2015. doi:10.1152/japplphysiol.91573.2008

    Article  PubMed  CAS  Google Scholar 

  • Boppart MD, Burkin DJ, Kaufman SJ (2006) Alpha7beta1-integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol 290(6):C1660–C1665. doi:10.1152/ajpcell.00317.2005

    Article  PubMed  CAS  Google Scholar 

  • Butterfield TA, Best TM (2009) Stretch-activated ion channel blockade attenuates adaptations to eccentric exercise. Med Sci Sports Exerc 41(2):351–356. doi:10.1249/MSS.0b013e318187cffa

    Article  PubMed  CAS  Google Scholar 

  • Cameron IL, Hardman WE, Fullerton GD, Miseta A, Koszegi T, Ludany A, Kellermayer M (1996) Maintenance of ions, proteins and water in lens fiber cells before and after treatment with non-ionic detergents. Cell Biol Int 20(2):127–137

    Article  PubMed  CAS  Google Scholar 

  • Carlson CJ, Fan Z, Gordon SE, Booth FW (2001) Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload. J Appl Physiol 91(5):2079–2087

    PubMed  CAS  Google Scholar 

  • Cerny LC, Bandman E (1986) Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J Cell Biol 103(6 Pt 1):2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271(48):30847–30857

    Article  PubMed  CAS  Google Scholar 

  • Eliasson J, Elfegoun T, Nilsson J, Kohnke R, Ekblom B, Blomstrand E (2006) Maximal lengthening contractions increase p70 S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 291(6):E1197–E1205. doi:10.1152/ajpendo.00141.2006

    Article  PubMed  CAS  Google Scholar 

  • Frier BC, Locke M (2007) Heat stress inhibits skeletal muscle hypertrophy. Cell Stress Chaperones 12(2):132–141

    Article  PubMed  CAS  Google Scholar 

  • Gjovaag TF, Vikne H, Dahl HA (2006) Effect of concentric or eccentric weight training on the expression of heat shock proteins in m. biceps brachii of very well trained males. Eur J Appl Physiol 96(4):355–362

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Kojima A, Morioka S, Naito T, Akema T, Matsuba Y, Fujiya H, Sugiura T, Ohira Y, Yoshioka T (2007) Geranylgeranylaceton induces heat shock protein 72 in skeletal muscle cells. Biochem Biophys Res Commun 358(1):331–335. doi:10.1016/j.bbrc.2007.04.129

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T (2003) Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch 447(2):247–253. doi:10.1007/s00424-003-1177-x

    Article  PubMed  CAS  Google Scholar 

  • Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC (2009) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58(3):567–578. doi:10.2337/db08-1070

    Article  PubMed  Google Scholar 

  • Gupte AA, Bomhoff GL, Touchberry CD, Geiger PC (2011) Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. J Appl Physiol 110(2):451–457. doi:10.1152/japplphysiol.00849.2010

    Article  PubMed  CAS  Google Scholar 

  • Halevy O, Krispin A, Leshem Y, McMurtry JP, Yahav S (2001) Early-age heat exposure affects skeletal muscle satellite cell proliferation and differentiation in chicks. Am J Physiol Regul Integr Comp Physiol 281(1):R302–R309

    PubMed  CAS  Google Scholar 

  • Han R (2011) Muscle membrane repair and inflammatory attack in dysferlinopathy. Skelet Muscle 1(1):10. doi:10.1186/2044-5040-1-10

    Article  PubMed  Google Scholar 

  • Hather BM, Tesch PA, Buchanan P, Dudley GA (1991) Influence of eccentric actions on skeletal muscle adaptations to resistance training. Acta Physiol Scand 143(2):177–185

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JM, Fedele MJ, Farrell PA (2000) Time course evaluation of protein synthesis and glucose uptake after acute resistance exercise in rats. J Appl Physiol 88(3):1142–1149

    PubMed  CAS  Google Scholar 

  • Huey KA (2006) Regulation of HSP25 expression and phosphorylation in functionally overloaded rat plantaris and soleus muscles. J Appl Physiol 100(2):451–456. doi:10.1152/japplphysiol.01022.2005

    Article  PubMed  CAS  Google Scholar 

  • Jurivich DA, Chung J, Blenis J (1991) Heat shock induces two distinct S6 protein kinase activities in quiescent mammalian fibroblasts. J Cell Physiol 148(2):252–259. doi:10.1002/jcp.1041480210

    Article  PubMed  CAS  Google Scholar 

  • Kakigi R, Naito H, Ogura Y, Kobayashi H, Saga N, Ichinoseki-Sekine N, Yoshihara T, Katamoto S (2011) Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J Physiol Sci 61(2):131–140. doi:10.1007/s12576-010-0130-y

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer M, Ludany A, Jobst K, Szucs G, Trombitas K, Hazlewood CF (1986) Cocompartmentation of proteins and K+ within the living cell. Proc Natl Acad Sci U S A 83(4):1011–1015

    Article  PubMed  CAS  Google Scholar 

  • Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17(4):2107–2115

    PubMed  CAS  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J, Kingston RE (1996) Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10(21):2782–2793

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Goto K, Kojima A, Akema T, Uehara K, Aoki H, Sugiura T, Ohira Y, Yoshioka T (2005) Possible role of calcineurin in heating-related increase of rat muscle mass. Biochem Biophys Res Commun 331(4):1301–1309. doi:10.1016/j.bbrc.2005.04.096

    Article  PubMed  CAS  Google Scholar 

  • Koh TJ (2002) Do small heat shock proteins protect skeletal muscle from injury? Exerc Sport Sci Rev 30(3):117–121

    Article  PubMed  Google Scholar 

  • Koh TJ, Brooks SV (2001) Lengthening contractions are not required to induce protection from contraction-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 281(1):R155–R161

    PubMed  CAS  Google Scholar 

  • Koh TJ, Escobedo J (2004) Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. Am J Physiol Cell Physiol 286(3):C713–C722

    Article  PubMed  CAS  Google Scholar 

  • Kojima A, Goto K, Morioka S, Naito T, Akema T, Fujiya H, Sugiura T, Ohira Y, Beppu M, Aoki H, Yoshioka T (2007) Heat stress facilitates the regeneration of injured skeletal muscle in rats. J Orthop Sci 12(1):74–82. doi:10.1007/s00776-006-1083-0

    Article  PubMed  Google Scholar 

  • Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351(Pt 2):289–305

    Article  PubMed  CAS  Google Scholar 

  • Komulainen J, Kytola J, Vihko V (1994) Running-induced muscle injury and myocellular enzyme release in rats. J Appl Physiol 77(5):2299–2304

    PubMed  CAS  Google Scholar 

  • Koren J 3rd, Jinwal UK, Jin Y, O’Leary J, Jones JR, Johnson AG, Blair LJ, Abisambra JF, Chang L, Miyata Y, Cheng AM, Guo J, Cheng JQ, Gestwicki JE, Dickey CA (2010) Facilitating Akt clearance via manipulation of Hsp70 activity and levels. J Biol Chem 285(4):2498–2505. doi:10.1074/jbc.M109.057208

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Bruce CR, Spurrell BE, Hawley JA (2002) Effect of training on activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in rat soleus muscle. Clin Exp Pharmacol Physiol 29(8):655–660

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Lee CT, Kim YW, Han SK, Shim YS, Yoo CG (2005) Preheating accelerates mitogen-activated protein (MAP) kinase inactivation post-heat shock via a heat shock protein 70-mediated increase in phosphorylated MAP kinase phosphatase-1. J Biol Chem 280(13):13179–13186

    Article  PubMed  CAS  Google Scholar 

  • Lin RZ, Hu ZW, Chin JH, Hoffman BB (1997) Heat shock activates c-Src tyrosine kinases and phosphatidylinositol 3-kinase in NIH3T3 fibroblasts. J Biol Chem 272(49):31196–31202

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Lormes W, Baur C, Opitz-Gress A, Altenburg D, Lehmann M, Steinacker JM (2000) Human skeletal muscle HSP70 response to physical training depends on exercise intensity. Int J Sports Med 21(5):351–355

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Lormes W, Wang L, Reissnecker S, Steinacker JM (2004) Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training. Eur J Appl Physiol 91(2–3):330–335

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1997) The cellular stress response to exercise: role of stress proteins. Exerc Sport Sci Rev 25:105–136

    Article  PubMed  CAS  Google Scholar 

  • Locke M (2008) Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy. Acta Physiol (Oxf) 192(3):403–411. doi:10.1111/j.1748-1716.2007.01764.x

    Article  CAS  Google Scholar 

  • Maglara AA, Vasilaki A, Jackson MJ, McArdle A (2003) Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. J Physiol 548(Pt 3):837–846

    Article  PubMed  CAS  Google Scholar 

  • McArdle A, Dillmann WH, Mestril R, Faulkner JA, Jackson MJ (2004a) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18(2):355–357

    PubMed  CAS  Google Scholar 

  • McArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A, Iwanejko L, McArdle A, Jackson MJ (2004b) Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J Physiol 561(Pt 1):233–244. doi:10.1113/jphysiol.2004.069914jphysiol.2004.069914

    Article  PubMed  CAS  Google Scholar 

  • McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports 13(2):88–97

    Article  PubMed  Google Scholar 

  • Milne KJ, Noble EG (2002) Exercise-induced elevation of HSP70 is intensity dependent. J Appl Physiol 93(2):561–568

    PubMed  CAS  Google Scholar 

  • Miyabara EH, Martin JL, Griffin TM, Moriscot AS, Mestril R (2006) Overexpression of inducible 70-kDa heat shock protein in mouse attenuates skeletal muscle damage induced by cryolesioning. Am J Physiol Cell Physiol 290(4):C1128–C1138

    Article  PubMed  CAS  Google Scholar 

  • Morioka S, Goto K, Kojima A, Naito T, Matsuba Y, Akema T, Fujiya H, Sugiura T, Ohira Y, Beppu M, Aoki H, Yoshioka T (2008) Functional overloading facilitates the regeneration of injured soleus muscles in mice. J Physiol Sci 58(6):397–404. doi:10.2170/physiolsci.RP004008

    Article  PubMed  CAS  Google Scholar 

  • Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J (2000) Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 88(1):359–363

    PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115(Pt 14):2809–2816

    PubMed  CAS  Google Scholar 

  • O’Neill DE, Aubrey FK, Zeldin DA, Michel RN, Noble EG (2006) Slower skeletal muscle phenotypes are critical for constitutive expression of Hsp70 in overloaded rat plantaris muscle. J Appl Physiol 100(3):981–987

    Article  PubMed  Google Scholar 

  • Oehler-Janne C, von Bueren AO, Vuong V, Hollenstein A, Grotzer MA, Pruschy M (2008) Temperature sensitivity of phospho-Ser(473)-PKB/AKT. Biochem Biophys Res Commun 375(3):399–404. doi:10.1016/j.bbrc.2008.08.035

    Article  PubMed  Google Scholar 

  • Ogata T, Oishi Y, Roy RR, Ohmori H (2005) Effects of T3 treatment on HSP72 and calcineurin content of functionally overloaded rat plantaris muscle. Biochem Biophys Res Commun 331(4):1317–1323. doi:10.1016/j.bbrc.2005.04.048

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Yamada S, Sugiura T, Ohira Y, Yoshioka T, Goto K (2010) A possible role of NF-kappaB and HSP72 in skeletal muscle hypertrophy induced by heat stress in rats. Gen Physiol Biophys 29(3):234–242

    Article  PubMed  CAS  Google Scholar 

  • Oishi Y, Hayashida M, Tsukiashi S, Taniguchi K, Kami K, Roy RR, Ohira Y (2009) Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers. J Appl Physiol 107(5):1612–1621. doi:10.1152/japplphysiol.91651.2008

    Article  PubMed  CAS  Google Scholar 

  • Oishi Y, Ogata T, Ohira Y, Taniguchi K, Roy RR (2005) Calcineurin and heat shock protein 72 in functionally overloaded rat plantaris muscle. Biochem Biophys Res Commun 330(3):706–713. doi:10.1016/j.bbrc.2005.03.049

    Article  PubMed  CAS  Google Scholar 

  • Oishi Y, Taniguchi K, Matsumoto H, Ishihara A, Ohira Y, Roy RR (2002) Muscle type-specific response of HSP60, HSP72, and HSC73 during recovery after elevation of muscle temperature. J Appl Physiol 92(3):1097–1103

    PubMed  CAS  Google Scholar 

  • Papadopoulos S, Endeward V, Revesz-Walker B, Jurgens KD, Gros G (2001) Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. Proc Natl Acad Sci U S A 98(10):5904–5909. doi:10.1073/pnas.101109798

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos S, Jurgens KD, Gros G (2000) Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction. Biophys J 79(4):2084–2094. doi:10.1016/S0006-3495(00)76456-3

    Article  PubMed  CAS  Google Scholar 

  • Parise G, McKinnell IW, Rudnicki MA (2008) Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle Nerve 37(5):611–619. doi:10.1002/mus.20995

    Article  PubMed  CAS  Google Scholar 

  • Paul AC, Rosenthal N (2002) Different modes of hypertrophy in skeletal muscle fibers. J Cell Biol 156(4):751–760. doi:10.1083/jcb.200105147jcb.200105147

    Article  PubMed  CAS  Google Scholar 

  • Paulsen G, Lauritzen F, Bayer ML, Kalhovde JM, Ugelstad I, Owe SG, Hallen J, Bergersen LH, Raastad T (2009) Subcellular movement and expression of HSP27, alphaB-crystallin, and HSP70 after two bouts of eccentric exercise in humans. J Appl Physiol 107(2):570–582. doi:10.1152/japplphysiol.00209.2009

    Article  PubMed  CAS  Google Scholar 

  • Paulsen G, Vissing K, Kalhovde JM, Ugelstad I, Bayer ML, Kadi F, Schjerling P, Hallen J, Raastad T (2007a) Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol

  • Paulsen G, Vissing K, Kalhovde JM, Ugelstad I, Bayer ML, Kadi F, Schjerling P, Hallen J, Raastad T (2007b) Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol 293(2):R844–R853

    Article  PubMed  CAS  Google Scholar 

  • Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR (1991) EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiol 70(6):2522–2529

    PubMed  CAS  Google Scholar 

  • Sasai N, Agata N, Inoue-Miyazu M, Kawakami K, Kobayashi K, Sokabe M, Hayakawa K (2010) Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes. Muscle Nerve 41(1):100–106. doi:10.1002/mus.21473

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97(20):10832–10837. doi:10.1073/pnas.170276797

    Article  PubMed  CAS  Google Scholar 

  • Selsby JT, Rother S, Tsuda S, Pracash O, Quindry J, Dodd SL (2007) Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol 102(4):1702–1707

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Scheffler JM, Zeng C, Pleitner JM, Hannon KM, Grant AL, Gerrard DE (2009) Mitogen-activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass. Am J Physiol Cell Physiol 296(5):C1040–C1048. doi:10.1152/ajpcell.00475.2008

    Article  PubMed  CAS  Google Scholar 

  • Shima Y, Kitaoka K, Yoshiki Y, Maruhashi Y, Tsuyama T, Tomita K (2008) Effect of heat shock preconditioning on ROS scavenging activity in rat skeletal muscle after downhill running. J Physiol Sci 58(5):341–348. doi:10.2170/physiolsci.RP004808

    Article  PubMed  Google Scholar 

  • Singh MA, Ding W, Manfredi TJ, Solares GS, O’Neill EF, Clements KM, Ryan ND, Kehayias JJ, Fielding RA, Evans WJ (1999) Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. Am J Physiol 277(1 Pt 1):E135–E143

    PubMed  CAS  Google Scholar 

  • Skurvydas A, Kamandulis S, Stanislovaitis A, Streckis V, Mamkus G, Drazdauskas A (2008) Leg immersion in warm water, stretch-shortening exercise, and exercise-induced muscle damage. J Athl Train 43(6):592–599

    Article  PubMed  Google Scholar 

  • Smith HK, Maxwell L, Rodgers CD, McKee NH, Plyley MJ (2001) Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle. J Appl Physiol 90(4):1407–1414

    PubMed  CAS  Google Scholar 

  • Smith HK, Plyley MJ, Rodgers CD, McKee NH (1999) Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury. Eur J Appl Physiol Occup Physiol 80(2):84–91

    Article  PubMed  CAS  Google Scholar 

  • Smolka MB, Zoppi CC, Alves AA, Silveira LR, Marangoni S, Pereira-Da-Silva L, Novello JC, Macedo DV (2000) HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 279(5):R1539–R1545

    PubMed  CAS  Google Scholar 

  • Song J, Takeda M, Morimoto RI (2001) Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 3(3):276–282. doi:10.1038/35060068

    Article  PubMed  CAS  Google Scholar 

  • Spangenburg EE, McBride TA (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 100(1):129–135. doi:10.1152/japplphysiol.00619.2005

    Article  PubMed  CAS  Google Scholar 

  • Tesch PA (1988) Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc 20(5 Suppl):S132–S134

    PubMed  CAS  Google Scholar 

  • Thompson HS, Maynard EB, Morales ER, Scordilis SP (2003) Exercise-induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol Scand 178(1):61–72

    Article  PubMed  CAS  Google Scholar 

  • Thompson HS, Scordilis SP, Clarkson PM, Lohrer WA (2001) A single bout of eccentric exercise increases HSP27 and HSC/HSP70 in human skeletal muscle. Acta Physiol Scand 171(2):187–193

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT, Pollack GH (2005) Hypothesis: the origin of life in a hydrogel environment. Prog Biophys Mol Biol 89(1):1–8. doi:10.1016/j.pbiomolbio.2004.07.003

    Article  PubMed  CAS  Google Scholar 

  • Tsivitse SK, McLoughlin TJ, Peterson JM, Mylona E, McGregor SJ, Pizza FX (2003) Downhill running in rats: influence on neutrophils, macrophages, and MyoD + cells in skeletal muscle. Eur J Appl Physiol 90(5–6):633–638. doi:10.1007/s00421-003-0909-0

    Article  PubMed  Google Scholar 

  • Uehara K, Goto K, Kobayashi T, Kojima A, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T, Aoki H (2004) Heat-stress enhances proliferative potential in rat soleus muscle. Jpn J Physiol 54(3):263–271

    Article  PubMed  CAS  Google Scholar 

  • van Ginneken MM, de Graaf-Roelfsema E, Keizer HA, van Dam KG, Wijnberg ID, van der Kolk JH, van Breda E (2006) Effect of exercise on activation of the p38 mitogen-activated protein kinase pathway, c-Jun NH2 terminal kinase, and heat shock protein 27 in equine skeletal muscle. Am J Vet Res 67(5):837–844

    Article  PubMed  Google Scholar 

  • Vissing K, Bayer ML, Overgaard K, Schjerling P, Raastad T (2009) Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise. Acta Physiol (Oxf) 196(3):283–293. doi:10.1111/j.1748-1716.2008.01940.x

    Article  CAS  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A, Stevenson MA, Calderwood SK (2004) Interactions between extracellular signal-regulated protein kinase 1, 14-3-3epsilon, and heat shock factor 1 during stress. J Biol Chem 279(47):49460–49469. doi:10.1074/jbc.M406059200M406059200

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Vander Heide RS (2008) Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 295(2):H561–H568. doi:10.1152/ajpheart.00401.2008

    Article  PubMed  CAS  Google Scholar 

  • Williamson D, Gallagher P, Harber M, Hollon C, Trappe S (2003) Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 547(Pt 3):977–987

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara K, Ohno Y, Kojima A, Uehara K, Beppu M, Sugiura T, Fujimoto M, Nakai A, Ohira Y, Yoshioka T, Goto K (2011) Absence of heat shock transcription factor 1 retards the regrowth of atrophied soleus muscle in mice. J Appl Physiol. doi:10.1152/japplphysiol.00471.2011

  • Zhang BT, Yeung SS, Allen DG, Qin L, Yeung EW (2008) Role of the calcium–calpain pathway in cytoskeletal damage after eccentric contractions. J Appl Physiol 105(1):352–357. doi:10.1152/japplphysiol.90320.2008

    Article  PubMed  CAS  Google Scholar 

  • Zou K, Meador BM, Johnson B, Huntsman HD, Mahmassani Z, Valero MC, Huey KA, Boppart MD (2011) The {alpha}7{beta}1 integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. J Appl Physiol. doi:10.1152/japplphysiol.00081.2011

Download references

Acknowledgments

We thank Dr. Michael J. Wacker for technical assistance and useful scientific discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Gallagher.

Additional information

P.C. Geiger and P.M. Gallagher served as principal investigators for this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touchberry, C.D., Gupte, A.A., Bomhoff, G.L. et al. Acute heat stress prior to downhill running may enhance skeletal muscle remodeling. Cell Stress and Chaperones 17, 693–705 (2012). https://doi.org/10.1007/s12192-012-0343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0343-5

Keywords

Navigation