Skip to main content

Advertisement

Log in

Zebrafish HSF4: a novel protein that shares features of both HSF1 and HSF4 of mammals

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Heat-shock proteins (hsps) have important roles in the development of the eye lens. We previously demonstrated that knockdown of hsp70 gene expression using morpholino antisense technology resulted in an altered lens phenotype in zebrafish embryos. A less severe phenotype was seen with knockdown of heat-shock factor 1 (HSF1), suggesting that, while it likely plays a role in hsp70 regulation during lens formation, other regulatory factors are also involved. Heat-shock factor 4 plays an important role in mammalian lens development, and an expressed sequence tag encoding zebrafish HSF4 has been identified. The deduced amino acid sequence shares structural similarities with mammalian HSF4 including the lack of an HR-C domain. However, the HR-C domain is absent due to a severe C-terminal truncation within zebrafish HSF4 (zHSF4) relative to the mammalian protein. Surprisingly, the amino acid composition of the zHSF4 DNA binding domain shares a greater degree of identity with HSF1 proteins than it does with mammalian HSF4 proteins. Consistent with this, the binding affinity of in vitro synthesized zHSF4 for discontinuous heat-shock response element sequences is more limited, similar to what has been previously observed for HSF1 proteins. Hsf4 mRNA is expressed in zebrafish adult eye tissue but is only observed in developing embryonic tissue at 60 h post-fertilization or later. This, together with the lack of an observable phenotype following morpholino-based antisense knockdown of hsf4, suggests that zHSF4 is unlikely to play a role in regulating early embryonic lens development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172

    Article  PubMed  CAS  Google Scholar 

  • Åkerfelt M, Trouillet D, Mezger V, Sistonen LEA (2007) Heat shock factors at a crossroad between stress and development. Ann N Y Acad Sci 1113(1):15–27

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8(9):3761–3769

    PubMed  CAS  Google Scholar 

  • Anonymous (2010) Real-time PCR, applications guide. Rev. B, Bulletin #5279. Bio-Rad Laboratories

  • Björk JK, Sistonen L (2010) Regulation of the members of the mammalian heat shock factor family. FEBS J 277:4126–4139

    Article  PubMed  Google Scholar 

  • Blechinger SR, Evans TG, Tang PT, Kuwada JY, Warren JT, Krone PH (2002) The heat-inducible zebrafish hsp70 gene is expressed during normal lens development under non-stress conditions. Mech Dev 112(1–2):213–215

    Article  PubMed  CAS  Google Scholar 

  • Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X (2002) Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 31(3):276–278

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(web server issue):W465–W469

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8

    Article  PubMed  Google Scholar 

  • Engelhardt A, Wohlke A, Distl O (2007) Evaluation of canine heat-shock transcription factor 4 as a candidate for primary cataracts in English cocker spaniels and wire-haired Kromfohrlanders. J Anim Breed Genet 124:242–245

    Article  PubMed  CAS  Google Scholar 

  • Enoki Y, Sakurai H (2011) Diversity in DNA recognition by heat shock transcription factors (HSFs) from model organisms. FEBS Lett 585:1293–1298

    Article  PubMed  CAS  Google Scholar 

  • Enoki Y, Mukoda Y, Furutani C, Sakurai H (2010) DNA-binding and transcriptional activities of human HSF4 containing mutations that associate with congenital and age-related cataracts. Biochim Biophys Acta 1802:749–753

    Article  PubMed  CAS  Google Scholar 

  • Evans TG (2006) Expression, function and regulation of heat shock protein 70 (hsp70) gene during normal zebrafish (Danio rerio) embryogenesis. University of Saskatchewan, Saskatoon

    Google Scholar 

  • Evans TG, Krone PH (2005) Heat shock proteins: molecular chaperones as critical players in normal eukaryotic development. Trends Dev Biol 1:95–105

    CAS  Google Scholar 

  • Evans TG, Yamamoto Y, Jeffery WR, Krone PH (2005) Zebrafish Hsp70 is required for embryonic lens formation. Cell Stress Chaperones 10:66–78

    Article  PubMed  CAS  Google Scholar 

  • Evans TG, Belak Z, Ovsenek N, Krone PH (2007) Heat shock factor 1 is required for constitutive Hsp70 expression and normal lens development in embryonic zebrafish. Comp Biochem Physiol 146:131–140

    Google Scholar 

  • Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, S-I Y, Kato K, Yonemura S, Inouye S, Nakai A (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23:4297–4306

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Oshima I, Shinkawa T, Wang BB, Inouye S, Hayashida N, Takii R, Nakai A (2008) Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses. J Biol Chem 283(44):29961–29970

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R, Tan K, Inouye S, Takii R, Nakai A (2010) A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 21(1):106–116

    Article  PubMed  CAS  Google Scholar 

  • Gupta T, Mullins MC (2010) Dissection of organs from the adult zebrafish. J Vis Exp. doi:10.3791/1717

  • Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263(5144):224–227

    Article  PubMed  CAS  Google Scholar 

  • Hashikawa N, Yamamoto N, Sakurai H (2007) Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. J Biol Chem 282:10333–10340

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Baron M (2008) Boxshade 3.21 edn

  • Kanei-Ishii C, Tanikawa J, Nakai A, Morimoto RI, Ishii S (1997) Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science 277(5323):246–248

    Article  PubMed  CAS  Google Scholar 

  • Kawazoe Y, Tanabe M, Sasai N, Nagata K, Nakai A (1999) HSF3 is a major heat shock responsive factor during chicken embryonic development. Eur J Biochem 265(2):688–697

    Article  PubMed  CAS  Google Scholar 

  • Ke T, Wang QK, Ji B, Wang X, Liu P, Zhang X, Tang Z, Ren X, Liu M (2006) Novel HSF4 mutation causes congenital total white cataract in a Chinese family. Am J Ophthalmol 142(2):298–303, e292

    Article  PubMed  CAS  Google Scholar 

  • Krone PH, Evans TG, Blechinger SR (2003) Heat shock gene expression and function during zebrafish embryogenesis. Semin Cell Dev Biol 14:267–274

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 37(database issue):D205–D210

    Article  PubMed  CAS  Google Scholar 

  • McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male–female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102

    Article  PubMed  Google Scholar 

  • Mellersh CS, Pettitt L, Forman OP, Vaudin M, Barnett KC (2006) Identification of mutations in HSF4 in dogs of three different breeds with hereditary cataracts. Vet Ophthalmol 9(5):369–378

    Article  PubMed  CAS  Google Scholar 

  • Min J-N, Zhang Y, Moskophidis D, Mivechi NF (2004) Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 40(4):205–217

    Article  PubMed  CAS  Google Scholar 

  • Morange M (2006) HSFs in development. Handb Exp Pharmacol 172:153–169

    Article  PubMed  CAS  Google Scholar 

  • Morano KA, Thiele DJ (1999) Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 7:271–282

    PubMed  CAS  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Gene Dev 12(24):3788–3796

    Article  PubMed  CAS  Google Scholar 

  • Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13(4):1983–1997

    PubMed  CAS  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17(1):469–481

    PubMed  CAS  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Google Scholar 

  • Östling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282(10):7077–7086

    Google Scholar 

  • Pirkkala L, Nykänen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Schultz J, Milpetz F, Bork P (1999) SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res 27(1):229–232

    Article  PubMed  CAS  Google Scholar 

  • Råbergh CM, Airaksinen S, Soitamo A, Björklund HV, Johansson T, Nikinmaa M, Sistonen L (2000) Tissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress. J Exp Biol 203(12):1817–1824

    Google Scholar 

  • Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259(5092):230–234

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Enoki Y (2010) Novel aspects of heat shock factors: DNA recognition, chromatin modulation and gene expression. FEBS J 277:4140–4149

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shi X, Cui B, Wang Z, Weng L, Xu Z, Ma J, Xu G, Kong X, Hu L (2009) Removal of Hsf4 leads to cataract development in mice through down-regulation of γS-crystallin and Bfsp expression. BMC Mol Biol 10(1):10

    Article  PubMed  Google Scholar 

  • Smaoui N, Beltaief O, BenHamed S, M’Rad R, Maazoul F, Ouertani A, Chaabouni H, Hejtmancik JF (2004) A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci 45(8):2716–2721

    Article  PubMed  Google Scholar 

  • Somasundaram T, Bhat SP (2004) Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with αB-crystallin heat shock promoter. J Biol Chem 279(43):44497–44503

    Article  PubMed  CAS  Google Scholar 

  • Sprague J, Bayraktaroglu L, Clements D, Conlin T, Fashena D, Frazer K, Haendel M, Howe D, Mani P, Ramachandran S, Schaper K, Segerdell E, Song P, Sprunger B, Taylor S, Slyke CV, Westerfield M (2006) The Zebrafish Information Network: the zebrafish model organism database. Nucleic Acids Res 34:D581–D585

    Article  PubMed  CAS  Google Scholar 

  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. PNAS 99(26):16899–16903

    Article  PubMed  Google Scholar 

  • Takemori Y, Enoki Y, Yamamoto N, Fukai Y, Adachi K, Sakurai H (2009) Mutational analysis of human heat-shock transcription factor 1 reveals a regulatory role for oligomerization in DNA-binding specificity. Biochem J 424(2):253–261

    Article  PubMed  CAS  Google Scholar 

  • Tanabe M, Nakai A, Kawazoe Y, Nagata K (1997) Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J Biol Chem 272(24):15389–15395

    Article  PubMed  CAS  Google Scholar 

  • Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 17(6):1750–1758

    Article  PubMed  CAS  Google Scholar 

  • Tanabe M, Sasai N, Nagata K, Liu XD, Liu PCC, Thiele DJ, Nakai A (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J Biol Chem 274(39):27845–27856

    Article  PubMed  CAS  Google Scholar 

  • Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin 39(5):384–390

    Article  PubMed  CAS  Google Scholar 

  • Tanikawa J, Ichikawa-Iwata E, Kanei-Ishii C, Nakai A, Matsuzawa SI, Reed JC, Ishii S (2000) p53 Suppresses the c-Myb-induced activation of heat shock transcription factor 3. J Biol Chem 275(20):15578–15585

    Article  PubMed  CAS  Google Scholar 

  • Tu N, Hu Y, Mivechi NF (2006) Heat shock transcription factor (Hsf)-4b recruits Brg1 during the G1 phase of the cell cycle and regulates the expression of heat shock proteins. J Cell Bioch 98(6):1528–1542

    Article  CAS  Google Scholar 

  • Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Wilkerson DC, Skaggs HS, Sarge KD (2007) HSF2 binds to the Hsp90, Hsp27, and c-Fos promoters constitutively and modulates their expression. Cell Stress Chaperones 12(3):283–290

    Article  PubMed  CAS  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge OK, Sarge KD (2005) Mechanism of hsp70i gene bookmarking. Science 307(5708):421–423

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Takemori Y, Sakurai M, Sugiyama K, Sakurai H (2009) Differential recognition of heat shock elements by members of the heat shock transcription factor family. FEBS J 276(7):1962–1974

    Article  PubMed  CAS  Google Scholar 

  • Yeh FL, Hsu LY, Lin BA, Chen CF, Li IC, Tsai SH, Hsu T (2006) Cloning of zebrafish (Danio rerio) heat shock factor 2 (HSF2) and similar patterns of HSF2 and HSF1 mRNA expression in brain tissues. Biochimie 88(12):1983–1988

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Zhang Z, Zheng Y, Zhu Y, Wei Z, Xu H, Tang Q, Kong X, Hu L (2011) SKAP2, a novel target of HSF4b, associates with NCK2/F-actin at membrane ruffles and regulates actin reorganization in lens cell. J Cell Mol Med 15(4):783–795

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Kate Martelli for technical support on morpholino injections and Zach Belak for assistance with EMSA assays. This research was supported by a Discovery grant from the Natural Science and Engineering Research Council of Canada (NSERC) to P.H.K. C.L.S was the recipient of scholarships from NSERC and the University of Saskatchewan, College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick H. Krone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swan, C.L., Evans, T.G., Sylvain, N. et al. Zebrafish HSF4: a novel protein that shares features of both HSF1 and HSF4 of mammals. Cell Stress and Chaperones 17, 623–637 (2012). https://doi.org/10.1007/s12192-012-0337-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0337-3

Keywords

Navigation