Skip to main content
Log in

Endoplasmic reticulum stress or mutation of an EF-hand Ca2+-binding domain directs the FKBP65 rotamase to an ERAD-based proteolysis

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

FKBP65 is an endoplasmic reticulum (ER)-localized chaperone and rotamase, with cargo proteins that include tropoelastin and collagen. In humans, mutations in FKBP65 have recently been shown to cause a form of osteogenesis imperfecta (OI), a brittle bone disease resulting from deficient secretion of mature type I collagen. In this work, we describe the rapid proteolysis of FKBP65 in response to ER stress signals that activate the release of ER Ca2+ stores. A large-scale screen for stress-induced cellular changes revealed FKBP65 proteins to decrease within 6–12 h of stress activation. Inhibiting IP3R-mediated ER Ca2+ release blocked this response. No other ER-localized chaperone and folding mediators assessed in the study displayed this phenomenon, indicating that this rapid proteolysis of folding mediator is distinctive. Imaging and cellular fractionation confirmed the localization of FKBP65 (72 kDa glycoprotein) to the ER of untreated cells, a rapid decrease in protein levels following ER stress, and the corresponding appearance of a 30-kDa fragment in the cytosol. Inhibition of the proteasome during ER stress revealed an accumulation of FKBP65 in the cytosol, consistent with retrotranslocation and a proteasome-based proteolysis. To assess the role of Ca2+-binding EF-hand domains in FKBP65 stability, a recombinant FKBP65-GFP construct was engineered to ablate Ca2+ binding at each of two EF-hand domains. Cells transfected with the wild-type construct displayed ER localization of the FKBP65-GFP protein and a proteasome-dependent proteolysis in response to ER stress. Recombinant FKBP65-GFP carrying a defect in the EF1 Ca2+-binding domain displayed diminished protein in the ER when compared to wild-type FKBP65-GFP. Proteasome inhibition restored mutant protein to levels similar to that of the wild-type FKBP65-GFP. A similar mutation in EF2 did not confer FKBP65 proteolysis. This work supports a model in which stress-induced changes in ER Ca2+ stores induce the rapid proteolysis of FKBP65, a chaperone and folding mediator of collagen and tropoelastin. The destruction of this protein may identify a cellular strategy for replacement of protein folding machinery following ER stress. The implications for stress-induced changes in the handling of aggregate-prone proteins in the ER–Golgi secretory pathway are discussed. This work was supported by grants from the National Institutes of Health (R15GM065139) and the National Science Foundation (DBI-0452587).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

PPIase:

Peptidy-prolyl isomerase

UPR:

Unfolded protein response

mPT:

Mitochondrial permeability transition

OST:

Oligosaccharyltransferase

OI:

Osteogenesis imperfecta

ERAD:

ER-associated degradation

TUN:

Tunicamycin

LCT:

Clasto-lactacystin-β-lactone

References

  • Alanay Y et al (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 86:551–559

    Article  PubMed  CAS  Google Scholar 

  • Bandopadhyay R, de Belleroche J (2010) Pathogenesis of Parkinson's disease: emerging role of molecular chaperones. Trends Mol Med 16:27–36

    Article  PubMed  CAS  Google Scholar 

  • Brewster JL, Linseman DA, Bouchard RJ, Loucks FA, Precht TA, Esch EA, Heidenreich KA (2006) Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthase kinase 3beta and a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol Cell Neurosci 32:242–253

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Abdul HM, Opil W, Newman SF, Joshi G, Ansari MA, Sultana R (2006) Pin1 in Alzheimer's disease. J Neurochem 98:1697–1706

    Article  PubMed  CAS  Google Scholar 

  • Cheung KL, Bates M, Ananthanarayanan VS (2010) Effect of FKBP65, a putative elastin chaperone, on the coacervation of tropoelastin in vitro. Biochem Cell Biol 88:917–925

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Ann Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  • Coss MC, Winterstein D, Sowder RC, Simek SL (1995) Molecular cloning, DNA sequence analysis, and biochemical characterization of a novel 65-kDa FK506-binding protein (FKBP65). J Biol Chem 270:29336–29341

    Article  PubMed  CAS  Google Scholar 

  • Davies TH, Sanchez ER (2005) FKBP52. Int J Biochem Cell Biol 37:42–47

    Article  PubMed  CAS  Google Scholar 

  • Davis EC, Mecham RP (1996) Selective degradation of accumulated secretory peroteins in the endoplasmic reticulum. J Biol Chem 271:3787–3794

    Article  PubMed  CAS  Google Scholar 

  • Davis EC, Broekelmann TJ, Ozawa Y, Mecham RP (1998) Identification of tropoelastin as a ligand for the 65-kD FK506-binding protein, FKBP65, in the secretory pathway. J Cell Biol 140:295–303

    Article  PubMed  CAS  Google Scholar 

  • Deniaud A, Sharaf O, Maillier E, Poncet D, Kroemer G, Lemaire C, Brenner C (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27:285–299

    Article  PubMed  CAS  Google Scholar 

  • Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436

    Article  PubMed  CAS  Google Scholar 

  • Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525

    Article  PubMed  CAS  Google Scholar 

  • Inagi R (2010) Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10:156–165

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Yamamoto A, Kitamura A, Lamande SR, yoshimori T, Bateman JF, Kubota H, Nagata K (2009) Autophagic elimination of misfolded procollagen aggregates in the endoplasmic reticulum as a means of cell protection. Mol Biol Cell 20:2744–2654

    Article  Google Scholar 

  • Ishikawa Y, Vranka J, Wirz J, Nagata K, Bachinger H (2008) The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J Biol Chem 283:31584–31590

    Article  PubMed  CAS  Google Scholar 

  • Jinwal UK et al (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30:591–599

    Article  PubMed  CAS  Google Scholar 

  • Kang C, Hong Y, Dhe-Paganon S, Yoon HS (2008) FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16:318–325

    Article  PubMed  CAS  Google Scholar 

  • Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756

    Article  PubMed  CAS  Google Scholar 

  • Kesvatera T, Jonsson B, Telling A, Tongu V, Vija H, Thulin E, Linse S (2001) Calbindin D9k: a protein optimized for calcium binding at neutral pH. Biochemistry 40:15334–15340

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10:637–643

    Article  PubMed  CAS  Google Scholar 

  • Li G, Mongillo M, Chin K, Harding HP, Ron D, Marks A, Tabas I (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-trphosphate receptor activity in endoplasmic reticulum-induced apoptosis. J Cell Biol 186:783–792

    Article  PubMed  CAS  Google Scholar 

  • Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8:904–916

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Sekiguchi T, Kuraoka A, Fukushima K, Shibata Y, Komiyama S, Nishimoto T (1993) Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol Cell Biol 13:6367–6374

    PubMed  CAS  Google Scholar 

  • Niederer KE, Morrow DK, Gettings JL, Irick M, Krawiecki A, Brewster JL (2005) Cypermethrin blocks a mitochondria-dependent apoptotic signal initiated by deficient N-linked glycosylation within the endoplasmic reticulum. Cell Signal 17:177–186

    Article  PubMed  CAS  Google Scholar 

  • Olesen SH, Christensen LL, Sorensen FB, Cabezon T, Laurberg S, Orntoft TF (2005) Human FK506 binding protein is associated with colorectal cancer. Mol Cell Proteomics 4:534–544

    Article  PubMed  CAS  Google Scholar 

  • Patterson CE, Schaub T, Coleman EJ, Davis EC (2000) Developmental regulation of FKBP65, an ER-localized extracellular matrix binding-protein. Mol Biol Cell 11:3925–3935

    PubMed  CAS  Google Scholar 

  • Patterson CE, Abrams WR, Wolter NE, Rosenbloom J, Davis EC (2005) Developmental regulation and coordinate reexpression of FKBP65 with extracellular matrix proteins after lung injury suggest a specialized function for this endoplasmic reticulum immunophilin. Cell Stress Chaperones 10:285–295

    Article  PubMed  CAS  Google Scholar 

  • Rajpar MH et al (2009) Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet 5:1–15

    Article  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  • Rudrabhatla P, Pant HC (2010) Phosphorylation-specific peptidyl-prolyl isomerization of neuronal cytoskeletal proteins by Pin1: implications for therapeutics in neurodegeneration. J Alzheimers Dis 19:389–4503

    PubMed  CAS  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Uchida C, Shin RW, Shimazaki K, Uchida T (2007) Prolyl isomerase, Pin1: new findings of post-translational modifications and physiological substrates in cancer, asthma and Alzheimer's disease. Cell Mol Life Sci 65:359–375

    Article  Google Scholar 

  • Tremmel D, Tropschug M (2007) Neurospora crassa FKBP22 is a novel ER chaperone and functionally cooperates with BiP. J Mol Biol 369:55–68

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Han R, Wu D, Li J, Chen C, Ma H, Huaifeng M (2007) The binding of FKBP23 to BiP modulates BiP's ATPase activity with its PPIase activity. Biochem Biophys Res Commun 354:315–320

    Article  PubMed  CAS  Google Scholar 

Download references

Grants

This work was supported by grants from the National Institutes of Health (R15GM065139) and the National Science Foundation (DBI-0452587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay L. Brewster.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 455 kb)

ESM 2

(XLSX 464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, L.A., Ramirez, E.A., Trinh, V.T. et al. Endoplasmic reticulum stress or mutation of an EF-hand Ca2+-binding domain directs the FKBP65 rotamase to an ERAD-based proteolysis. Cell Stress and Chaperones 16, 607–619 (2011). https://doi.org/10.1007/s12192-011-0270-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0270-x

Keywords

Navigation