Skip to main content
Log in

Predicting the functionally distinct residues in the heme, cation, and substrate-binding sites of peroxidase from stress-tolerant mangrove specie, Avicennia marina

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Recent work was conducted to predict the structure of functionally distinct regions of Avicennia marina peroxidase (AP) by using the structural coordinates of barley grains peroxidase as the template. This enzyme is utilized by all living organisms in many biosynthetic or degradable processes and in defense against oxidative stress. The homology model showed some distinct structural changes in the heme, calcium, and substrate-binding regions. Val53 was found to be an important coordinating residue between distal calcium ion and the distal heme site while Ser176 is coordinated to the proximal histidine through Ala174 and Leu172. Different ionic and hydrogen-bonded interactions were also observed in AP. Analyses of various substrate–enzyme interactions revealed that the substrate-binding pocket is provided by the residues, His41, Phe70, Gly71, Asp138, His139, and Lys176; the later three residues are not conserved in the peroxidase family. We have also performed structural comparison of the A. marina peroxidase with that of two class III salt-sensitive species, peanut and soybean. Four loop regions were found to have largest structural deviation. The overall protein sequence was also analyzed for the presence of probable post-translational modification sites and the functional significance of these sites were outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP:

Avicennia marina peroxidase

BGP:

Barley grain peroxidase

PNP:

Peanut peroxidase

SBP:

Soybean peroxidase

HRP:

Horseradish peroxidase

BHA:

Benzhydroxamate

FCN:

Ferulic acid-cyanide

FA:

Formic acid

CO:

Carbon monoxide

TRIS:

Tris (hydroxy methyl) aminomethane

References

  • Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM (2003) Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37:139–144

    Article  PubMed  CAS  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barcel A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Botany 60:377–390

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:D154–D159

    Article  PubMed  CAS  Google Scholar 

  • Bao L, Shengwu M, van Huystee RB (2001) The effects of the site-directed removal of N-glycosylation from cationic peanut peroxidase on its function. Arch Biochem Biophys 386:17–24

    Article  Google Scholar 

  • Bause E (1983) Structural requirements of N-glycosylation of proteins studies with proline peptides as conformational probes. Biochem J 209:331–336

    PubMed  CAS  Google Scholar 

  • Berglund GI, Carlsson GH, Smith AT, Szo¨ke H, Henriksen A, Hajdu J (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463–468

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  PubMed  Google Scholar 

  • Bradbury AF, Smyth DG (1987) Biosynthesis of the C-terminal amide in peptide hormones. Biosci Rep 7:907–916

    Article  PubMed  CAS  Google Scholar 

  • Carlsson GH, Nicholls P, Svistunenko D, Berglund GI, Hajdu J (2005) Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. Biochemistry 44:635–642

    Article  PubMed  CAS  Google Scholar 

  • Chinea RG, Lopez N, Pons T, Vriend G (1998) Homology modeling, model and software evaluation: three related resources. CABIOS 14:523–528

    Google Scholar 

  • Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–408

    Article  PubMed  CAS  Google Scholar 

  • Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  PubMed  CAS  Google Scholar 

  • Dalton DA (1991) Ascorbate peroxidases. Peroxidases in chemistry and biology. CRC, Boca Raton, pp 139–153

    Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 367). Cladistics 5:164–166

    Google Scholar 

  • Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nat Struct Biol 4:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Yamada H, Yamazaki I (1976) Heme-linked proton dissociation of carbon monoxide complexes of myoglobin and peroxidase. Biochim Biophys Acta 427:608–616

    PubMed  CAS  Google Scholar 

  • Henriksen A, Mirza O, Indiani C, Teilium K, Smulevich G, Welinder KG, Gajhede M (2001) Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Sci 10:108–115

    Article  PubMed  CAS  Google Scholar 

  • Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M (1998a) Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry 37:8054–8060

    Article  PubMed  CAS  Google Scholar 

  • Henriksen A, Smith AT, Gajhede M (1999) The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates. J Biol Chem 274:35005–35011

    Article  PubMed  CAS  Google Scholar 

  • Henriksen A, Welinder KG, Gajhede M (1998b) Structure of barley grain peroxidase refined at 19-Å resolution. J Biol Chem 273:2241–2248

    Article  PubMed  CAS  Google Scholar 

  • Howe K, Bateman A, Durbin R (2002) QuickTree: building huge neighbour-Joining trees of protein sequences. Bioinformatics 18:1546–1547

    Article  PubMed  CAS  Google Scholar 

  • Howes BD, Rodriguez-Lopez JN, Smith AT, Smulevich G (1997) Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties. Biochemistry 36:1532–1543

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM (2000) Calcium-dependent protein kinase and their relatives. In: Krie M, Walker J (eds) Advances in botanical research incorporating advances in plant pathology. Academic, New York, pp 185–223

    Google Scholar 

  • Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37:D261–D266

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Jaggi M, Taneja J, Sinha AK (2011) Cloning and characterization of two new Class III peroxidase genes from Catharanthus roseus. Plant Physiol Biochem 49:404–412

    Article  PubMed  CAS  Google Scholar 

  • Laberge M, Huang Q, Stenner RS, Fidy J (2003) The endogenous calcium ions of horseradish peroxidase C are required to maintain the functional nonplanarity of the heme. Biophys J 84:2542–2552

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, McAurthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323–331

    Article  PubMed  CAS  Google Scholar 

  • Morishima I, Kurono M, Shiro Y (1986) Presence of endogenous calcium ion in horseradish peroxidase. J Biol Chem 261:9391–9399

    PubMed  CAS  Google Scholar 

  • Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 20: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigene family in rice and its evolution in land plants. Phytochemistry 6:1879–1893

    Article  Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  PubMed  CAS  Google Scholar 

  • Reddy CA, D'Souza TM (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Schullar DJ, Ban N, Huystee RB, Mcpherson A, Poulos TL (1996) The crystal structure of peanut peroxidase. Structure 4:311–321

    Article  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 206 Å resolution. J Biol Chem 269:32759–32767

    PubMed  CAS  Google Scholar 

  • Tams JW, Welinder KG (1998) Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase. FEBS Lett 421:234–236

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–250

    Article  PubMed  CAS  Google Scholar 

  • Watanabe L, de Moura PR, Bleicher L, Nascimento AS, Zamorano LS, Calvete JJ, Sanz L, Pérez A, Bursakov S, Roig MG, Shnyrov VL, Polikarpov I (2010) Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia). J Struct Biol 169:226–242

    Article  PubMed  CAS  Google Scholar 

  • Welinder KG (1991) Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochim Biophys Acta 1080:215–220

    Article  PubMed  CAS  Google Scholar 

  • Welinder KG, Justesen AF, Kjærsgård IVH, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Article  PubMed  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  Google Scholar 

  • Wittenberg BA, Antonini E, Brunori M, Noble RW, Wittenberg JB, Wymann J (1967) Studies on the equilibria and kinetics of the reactions of peroxidases with ligands. The dissociation of carbon monoxide from carbon monoxide ferro-horseradish peroxidase. Biochemistry 6:1970–1974

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmat Salim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabeen, U., Abbasi, A. & Salim, A. Predicting the functionally distinct residues in the heme, cation, and substrate-binding sites of peroxidase from stress-tolerant mangrove specie, Avicennia marina . Cell Stress and Chaperones 16, 585–605 (2011). https://doi.org/10.1007/s12192-011-0269-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0269-3

Keywords

Navigation