Skip to main content

Advertisement

Log in

Theiler’s murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

CPE:

Cytopathic effect

DAPI:

4’,6-Diamino-2-phenylindole dihydrochloride

DMEM:

Dulbecco’s modified Eagle Medium

DMSO:

Dimethyl sulphoxide

DTT:

Dithiothreitol

EDTA:

Ethylene diamine tetra-acetic acid

EMCV:

Encephalomyelitis virus

FMDV:

Foot-and-mouth disease virus

GA:

Geldanamycin

Hop:

Hsp70/Hsp90 organising protein

hpi:

Hours post-infection

Hsp:

Heat shock protein

MOI:

Multiplicity of infection

Nov:

Novobiocin

PMSF:

Phenyl methyl sulphonyl fluoride

PV:

Poliovirus

TMEV:

Theiler’s murine encephalomyelitis virus

References

  • Abed Y, Boivin G (2008) New Saffold cardioviruses in 3 children, Canada. Emerg Infect Dis 14:834–836

    Article  PubMed  CAS  Google Scholar 

  • Beck R, Nassal M (2003) Efficient Hsp-90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem 278:36128–36138

    Article  PubMed  CAS  Google Scholar 

  • Blinkova O, Kapoor A, Victoria J, Wolfe N, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Zaidi S, Delwart EL (2009) Cardioviruses are genetically diverse and common enteric infections in South Asian children. J Virol 83:4631–4641

    Article  PubMed  CAS  Google Scholar 

  • Brahic M, Bureau J, Michiels T (2005) The genetics of the persistent infection caused by Theiler’s virus. Ann Rev Microbiol 59:279–298

    Article  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  PubMed  CAS  Google Scholar 

  • Burch AD, Weller SK (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 79(16):10740–10749

    Article  PubMed  CAS  Google Scholar 

  • Castorena KM, Weeks SA, Stapleford KA, Cadwallader AM, Miller DJ (2007) A functional heat shock protein 90 chaperone is essential for efficient flock house virus RNA polymerase synthesis in Drosophila cells. J Virol 81(16):8412–8420

    Article  PubMed  CAS  Google Scholar 

  • Chase G, Deng T, Fodor E, Wah Leung B, Mayer D, Schwemmle M, Brownlee G (2008) Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 377:431–439

    Article  PubMed  CAS  Google Scholar 

  • Chiu ChY, Greninger AL, Kanada K, Kwok T, Fischer KF, Runkel C, Louie JK, Glaser CA, Yagi S, Schnuur DP, Haggerty TD, Parsonnet J, Ganem D, DeRisi JL (2008) Identification of cardioviruses related to Theiler’s murine encephalomyelitis virus in human infections. PNAS 105:14124–14129

    Article  PubMed  CAS  Google Scholar 

  • Collier NC, Schlesinger MJ (1986) The dynamic state of heat shock proteins in chicken embryo fibroblasts. J Cell Biol 103:1495–1507

    Article  PubMed  CAS  Google Scholar 

  • Connor JH, McKenzie MO, Parks GD, Lyles DS (2007) Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses. Virology 362:109–119

    Article  PubMed  CAS  Google Scholar 

  • Donnelly A, Blagg BSJ (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717

    Article  PubMed  CAS  Google Scholar 

  • Drexler JF, de Souza Luna LK, Stocker A, Almeida PS, Ribeiro TCM, Petersen N, Herzog P, Pedroso C, Huppertz HI, da Costra RH, Baumgarte S, Drosten C (2008) Circulation of three lineages of a novel Saffold cardiovirus in humans. Emerg Infect Dis 14:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • Franke B, Margolin J (1981) Effect of novobiocin and other gyrase inhibitors on virus replication and DNA synthesis in Herpes Simplex virus type 1-infected BHK-21 cells. J Gen Virol 52:401–404

    Article  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  PubMed  CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117

    Article  PubMed  CAS  Google Scholar 

  • Geller R, Vignuzzi M, Adino P, Freedman J (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21:195–205

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  • Grenert JP, Sullival WP, Faddan P, Haystead TAJ, Clark J, Mimnaugh E, Krutzsch H, Ochel H-J, Schultz TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    Article  PubMed  CAS  Google Scholar 

  • Guerrero CA, Bouyssounade D, Zarate S, Isa P, Lǒpez T, Espinosa R, Romero P, Mĕndez E, Lǒpez S, Aras CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102

    Article  PubMed  CAS  Google Scholar 

  • Hartl F (1996) Molecular chaperones in cellular folding. Nature 381:571–579

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Toft DO, Seeger C (1997) Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J 16(1):59–68

    Article  PubMed  Google Scholar 

  • Hung JJ, Chung CS, Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol 76(3):1379–1390

    Article  PubMed  CAS  Google Scholar 

  • Jauka TI, Mutsvuguma L, Boshoff A, Edkins AL, Knox C (2010) Localisation of Theiler’s Murine Encephalomyelitis virus protein 2C to the Golgi apparatus using antibodies generated against a peptide region. J Virol Methods 168:162–169

    Article  PubMed  CAS  Google Scholar 

  • Jones MS, Lukashov VV, Ganac RD, Schnurr DP (2007) Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. J Clin Microbiol 45:2144–2150

    Article  PubMed  CAS  Google Scholar 

  • Kampmueller KM, Miller DJ (2005) The cellular chaperone heat shock protein 90 facilitates flock house virus RNA replication in Drosophila cells. J Virol 79:6827–6837

    Article  PubMed  CAS  Google Scholar 

  • Knox C, Moffat K, Ali S, Ryan MD, Wileman T (2005) Foot and Mouth Disease Virus replication sites form next to the nucleus and close to the Golgi apparatus but exclude marker proteins associated with host membrane compartments. J Gen Virol 86:687–696

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Mitra D (2005) Heat shock protein 40 is necessary for human immunodeficiency virus-1 Nef-mediated enhancement of viral gene expression and replication. J Biol Chem 280:40041–40050

    Article  PubMed  CAS  Google Scholar 

  • Landini MP, Baldassarri B (1982) Early inhibition of cytomegalovirus replication by novobiocin. J Antimicrob Chemother 10:533–537

    Article  PubMed  CAS  Google Scholar 

  • Larsen AK, Escargueil AE, Skladanowski A (2003) Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 99:167–181

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Manoj Kumar AS, Jones MS, Knowles NJ, Lipton HL (2008) Phylogenetic analysis of the species Theilovirus: emerging murine and human pathogens. J Virol 82:11545–11554

    Article  PubMed  CAS  Google Scholar 

  • Lührmann A, Thölke J, Behn I, Schumann J, Tiegs G, Hauschildt S (1998) Immunomodulating properties of the antibiotic novobiocin in human monocytes. Antimicrob Agents Chemother 42:1911–1916

    PubMed  Google Scholar 

  • Macejak DG, Sarnow P (1992) Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. J Virol 66:1520–1527

    PubMed  CAS  Google Scholar 

  • Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000a) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognised ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186

    Article  PubMed  CAS  Google Scholar 

  • Marcu MG, Schulte TW, Neckers L (2000b) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signalling proteins. J Natl Cancer Inst 92:242–248

    Article  PubMed  CAS  Google Scholar 

  • Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277(47):45306–45314

    Article  PubMed  CAS  Google Scholar 

  • Murphy PJM, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB (2001) Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J Biol Chem 276:30092–30098

    Article  PubMed  CAS  Google Scholar 

  • Murray L, Luke GA, Ryan MD, Wileman T, Knox C (2009) Amino acid substitutions in the 2C coding sequence of Theiler’s murine encephalomyelitis virus affect virus growth and alter protein distribution. Virus Res 144:74–82

    Article  PubMed  CAS  Google Scholar 

  • Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD (2004) Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev 17:174–207

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3:3095–3100

    PubMed  CAS  Google Scholar 

  • Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  • Racaniello VR (2001) Picornaviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 4th edn. Lippincott Williams and Wilkins Publishers, Philadelphia, pp 685–722

    Google Scholar 

  • Reece RJ, Maxwell A (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 26:335–375

    Article  PubMed  CAS  Google Scholar 

  • Robinson MJ, Corbett AH, Osheroff N (1993) Effects of topoisomerase II-targeted drugs on enzyme-mediated DNA cleavage and ATP hydrolysis: evidence for distinct drug interaction domains on topoisomerase II. Biochemistry 32:3638–3643

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU (1996) Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci USA 93(25):14536–14540

    Article  PubMed  CAS  Google Scholar 

  • Singh GK, Jayanarayan G, Dey CS (2005) Novobiocin induces apoptosis-like cell death in topoisomerase II over-expressing arsenite resistant Leishmania donovani. Mol Biochem Parasitol 141:57–69

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, McCarthya S, Chroviana A, Olingera G, Stossela A, Geisbertb TW, Hensleya LE, Connor JH (2010) Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antivir Res 87:187–194

    Article  PubMed  CAS  Google Scholar 

  • Snoeckx L, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    PubMed  CAS  Google Scholar 

  • Stahl M, Retziaff M, Nassal M, Beck J (2007) Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system. Nucleic Acids Res 35(18):6124–6136

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    Article  PubMed  CAS  Google Scholar 

  • Sullivan CS, Pipas JM (2001) The virus-chaperone connection. Virology 287:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sullivan W, Stensgard B, Caucutt G, Bartha B, McMahon N, Alnemri ES, Litwack G, Toft D (1997) Nucleotides and two functional states of hsp90. J Biol Chem 272:8007–8012

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi Y, Takuto N, Watanabe T, Kano K (1983) Inhibition of retrovirus RNA-dependent DNA polymerase by novobiocin and nalidixic acid. J Gen Virol 64:2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Minami M, Minami Y (2005) Constantly updated knowledge of Hsp90. J Biochem 137(4):443–447

    Article  PubMed  CAS  Google Scholar 

  • Tomita Y, Mizuno T, Diez J, Naito S, Ahlquist P, Ishikawa M (2003) Mutation of host DnaJ homolog inhibits brome mosaic virus negative-strand RNA synthesis. J Virol 77:2990–2997

    Article  PubMed  CAS  Google Scholar 

  • Ujino S, Yamaguchi S, Shimotohno K, Takaku H (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus non-structural protein NS3. J Biol Chem 284(11):6841–6846

    Article  PubMed  CAS  Google Scholar 

  • Vance LM, Moscufo N, Chow M, Heinz BA (1997) Poliovirus 2C region functions during encapsidation of viral RNA. J Virol 71:8759–8765

    PubMed  CAS  Google Scholar 

  • Vasconcelos DY, Cai XH, Oglesbee MJ (1998) Constitutive overexpression of the major inducible 70kDa heat shock protein mediates large plaque formation by measles virus. J Gen Virol 79:2239–2247

    PubMed  CAS  Google Scholar 

  • Xiao A, Wong J, Luo H (2010) Viral interaction with molecular chaperones: role in regulating viral infection. Arch Virol 155:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  PubMed  CAS  Google Scholar 

  • Yun B, Huang W, Leach N, Hartson SD, Matts RL (2004) Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-co-chaperone-client interactions. Biochemistry 43:8217–8229

    Article  PubMed  CAS  Google Scholar 

  • Zoll J, Hulshof SE, Lamke K, Lunel FV, Melchers JG, Schoondermark-van de Ven E, Roivainen M, Galama JMD, van Kuppeveld FJM (2009) Saffold virus, a human Theiler’s-like cardiovirus, is ubiquitous and causes infection early in life. PLoS Pathog 5:e1000416

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge T. Michiels for providing TMEV GDVII cDNA used for preparation of virus. This work was supported by a National Research Foundation grant (NRF, South Africa) and Joint Research Council funding (Rhodes University, South Africa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Knox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutsvunguma, L.Z., Moetlhoa, B., Edkins, A.L. et al. Theiler’s murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin. Cell Stress and Chaperones 16, 505–515 (2011). https://doi.org/10.1007/s12192-011-0262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0262-x

Keywords

Navigation