Skip to main content
Log in

The molecular characterization and expression of heat shock protein 90 (Hsp90) and 26 (Hsp26) cDNAs in sea cucumber (Apostichopus japonicus)

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The heat shock proteins (HSPs) are a family of proteins whose expression is enhanced in response to environmental stressors. The Apostichopus japonicus hsp90 and hsp26 genes were cloned using expressed sequence tag and rapid amplification of cDNA ends techniques. The full-length cDNA of Aphsp90 and Aphsp26 contains 3,458 and 1,688 nucleotides encoding 720 and 236 amino acids, respectively. Multiple alignments indicated that the deduced amino acid sequences of ApHsp90 and ApHsp26 shared a high level of identity with Hsp90 and small SHPs (sHSPs) sequences of zebrafish, ant, acorn worms, etc., and shared identical structural features with Hsp90 and sHSPs. The expression profiles of these two genes under heat treatment were investigated by real-time quantitative PCR. It was found that the messenger RNA (mRNA) transcripts of the two A. japonicus genes varied among different tissues under normal conditions and heat shock, and that the mRNA expression of the two genes was higher in the intestine compared to other tissues. Heat shock significantly elevated the expression of Aphsp90 and Aphsp26 mRNA in a temperature- and time-dependent manner. The results indicate that Aphsp90 and Aphsp26 played important roles in mediating the environmental stress in A. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abele D, Heise K, PÖrtner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Landry J (1994) Expression and function of the low molecular weight heat shock proteins. In: Morimoto R, Tissieres A, Georgopoulos C (eds) Structure, function and regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 335–373

    Google Scholar 

  • Bruce JL, Price BD, Coleman N, Calderwood SK (1993) Oxidant injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 53:12–15

    PubMed  CAS  Google Scholar 

  • Caplan AJ (1999) HSP90’s secrets unfold: new insights from structural and functional studies. Trends Cell Biol 9:262–268

    Article  PubMed  CAS  Google Scholar 

  • Chang ES (2005) Stressed-out lobsters: crustacean hyperglycemic hormone and stress proteins. Integr Comp Biol 45:43–50

    Article  PubMed  CAS  Google Scholar 

  • Chen JX (2004) Present status and prospects of sea cucumber industry in China. In: Lovatelli A, Conand C, Purcell S, Uthicke S, Hamel JF, Mercier A (eds) Advances in sea cucumber aquaculture and management, vol. 463. FAO, Rome, pp 25–38

    Google Scholar 

  • Chen YM, Kuo CE, Wang TY, Huang SL (2010) Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB(HSP90AB) and characterization of its expression in response to nodavirus. Fish Shellfish Immunol 28:895–904

    Article  PubMed  Google Scholar 

  • Choresh O, Loya Y, Müller WEG, Wiedenmann J (2003) The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization. Cell Stress Chaperones 9:38–48

    Google Scholar 

  • Chow AM, Ferrier-Pagès C, Khalouei S, Reynaud S, Brown IR (2009) Increased light intensity induces heat shock protein Hsp60 in coral species. Cell Stress Chaperones 14:469–476

    Article  PubMed  CAS  Google Scholar 

  • Crack JA, Mansour M, Sun Y, MacRae TH (2002) Functional analysis of a small heat shock/a-crystallin protein from Artemia franciscana: oligomerization and thermotolerance. Eur J Biochem 269:933–942

    Article  PubMed  CAS  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18:239–280

    Article  PubMed  CAS  Google Scholar 

  • Dong YW, Ji TT, Dong SL (2007) Stress responses to rapid temperature changes of the juvenile sea cucumber Apostichopus japonicus Selenka. J Ocean Univ China 6:275–280

    Article  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Fu XY, Xue CH, Miao BC, Li ZJ, Gao X, Yang WG (2005) Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): high alkaline protease activity. Aquaculture 246:321–329

    Article  CAS  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Ann Rev Cell Biol 9:601–634

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (1995) Phylogenetic analysis of the 90-kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073

    PubMed  CAS  Google Scholar 

  • Heise K, Puntarulo S, PÖrtner HO, Abele D (2003) Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Physiol C 134:79–90

    Article  CAS  Google Scholar 

  • Hensold JO, Hunt CR, Calderwood SK, Housman DE, Kingston RE (1990) DNA binding of the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 10:1600–1608

    PubMed  CAS  Google Scholar 

  • Huang PY, Kang ST, Chen WY, Hsu TC, Lo CF, Liu KF (2008) Identification of the small heat shock protein, HSP21, of shrimp Penaeus monodon and the gene expression of HSP21 is inactivated after white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 25:250–257

    Article  PubMed  CAS  Google Scholar 

  • Krebs RA, Feder ME (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones 2:60–71

    Article  PubMed  CAS  Google Scholar 

  • Li BQ, Yang HS, Zhang T, Zhou Y (2002) Effects of temperature on respiration and excretion of sea cucumber Apostichopus japonicus. Oceanol Limnologia Sin 33:182–187

    CAS  Google Scholar 

  • Li P, Zha J, Zhou KY (2009) Molecular cloning, mRNA expression, and characterization of HSP90 gene from Chinese mitten crab Eriocheir japonica sinensis. Comp Biochem Physiol B 153:229–235

    Article  PubMed  Google Scholar 

  • Liao Y (1997) Fauna sinica: phylum echinodermta class holothuroidea. Science Press, Beijing

    Google Scholar 

  • Linder B, Jin Z, Freedmans JH, Rubin CS (1996) Molecular characterization of a novel, developmentally regulated small embryonic chaperone from Caenorhabditis elegans. J Biol Chem 271:30158–30166

    Article  PubMed  CAS  Google Scholar 

  • Liu GB (2008) Artificial breeding of thermaltolerant strain of sea cucumber. Doctoral thesis. Institute of Oceanology, Chinese Academy of Sciences

  • MacRae TH (2000) Structure and function of small heat shock/a-crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  PubMed  CAS  Google Scholar 

  • Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648

    Article  PubMed  CAS  Google Scholar 

  • Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones 12:331–341

    Article  PubMed  CAS  Google Scholar 

  • Reineke A (2005) Identification and expression of a small heat shock protein in two lines of the endoparasitic wasp Venturia canescens. Comp Biochem Physiol A 141:60–69

    Article  CAS  Google Scholar 

  • Rosic NN, Pernice M, Dove S, Dunn S (2011) Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones 16:69–80

    Article  PubMed  CAS  Google Scholar 

  • Sanders BM (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 23:49–75

    Article  PubMed  CAS  Google Scholar 

  • Shirk PD, Broza R, Hemphill M, Perera OP (1998) α-Crystallin protein cognates in eggs of the moth, Plodia interpunctella: possible chaperones for the follicular epithelium yolk protein. Insect Biochem Mol Biol 28:151–161

    Article  PubMed  CAS  Google Scholar 

  • Soetaert A, Moens LN, Van der Ven K, Van Leemput K, Naudts B, Blust R, De Coen WM (2006) Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array. Comp Biochem Physiol C 142:66–76

    Google Scholar 

  • Tomanek L (2002) The heat-shock response: its variation, regulation and ecological importance in intertidal gastropods (genus Tegula). Integr Comp Biol 42:797–807

    Article  PubMed  CAS  Google Scholar 

  • van Montfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  Google Scholar 

  • Viant MR, Werner I, Rosenblum ES (2003) Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiol Biochem 29:159–171

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang FY, Yang HS, Gao F, Liu GB (2008) Effects of acute temperature or salinity stress on the immune response in sea cucumber Apostichopus japonicus. Comp Biochem Physiol A 151:491–498

    Article  Google Scholar 

  • Wanilada R, Rungnapa L, Pikul J (2010) Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Dev Comp Immunol 10:1082–1089

    Google Scholar 

  • Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063–1081

    PubMed  CAS  Google Scholar 

  • Wu LT, Chu KH (2008) Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: evidence for its role in the regulation of vitellogenin synthesis. Mol Reprod Dev 75:952–959

    Article  PubMed  CAS  Google Scholar 

  • Yang HS, Zhou Y, Zhang T, Yuan XT, Li XX, Liu Y, Zhang FS (2006) Metabolic characteristics of sea cucumber Apostichopus japonicus Selenka during aestivation. J Exp Mar Biol Ecol 330:505–510

    Article  CAS  Google Scholar 

  • Zhang Q, Denlinger DL (2010) Molecular characterization of heat shock protein 90, 70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm. J Insect Physiol 56:138–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the agricultural seed project of Shan Dong province and the National Key Technology R&D Program (2006AA10A411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Yang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 45.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Yang, H., Zhao, H. et al. The molecular characterization and expression of heat shock protein 90 (Hsp90) and 26 (Hsp26) cDNAs in sea cucumber (Apostichopus japonicus). Cell Stress and Chaperones 16, 481–493 (2011). https://doi.org/10.1007/s12192-011-0260-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0260-z

Keywords

Navigation