Skip to main content
Log in

Acute exercise activates myocardial nuclear factor kappa B

  • Short Communication
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The myocardial stress response to exercise is dependent on exercise intensity and thus understanding the molecular responses between various exercise intensity levels might aid in exercise prescription. Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor that mediates a variety of cellular processes including inflammation, immune responses, apoptosis and cell growth/development. NF-κB can be comprised of homo- and/or heterodimers formed from five distinct proteins: p50 (NF-κB1), p52 (NF-κB2), RelA (p65), c-Rel, and RelB. NF-κB is located in the cytoplasm and kept inactive by inhibitory proteins but following the exposure to a myriad of stimuli, an activated NF-κB dimer translocates to the nucleus and exerts transcriptional effects on upwards of 150 genes. To examine the activation of NF-κB in the myocardium following exercise, male Sprague–Dawley rats (n = 24) were exercised by treadmill running at 20 m/min for 30 min or 30 m/min for 20 min. At 0, 2, or 24 h following exercise, animals were anesthetized, hearts excised and immediately frozen in liquid nitrogen. Portions of hearts were homogenized, protein concentrations determined and extracts assayed for NF-κB activation (DNA binding activity) using electrophoretic mobility shift assays (EMSA). Visual examination of EMSA autoradiographs revealed an enhanced NF-κB activation in the hearts from exercised animals when compared with non-running controls. Subsequent supershift analyses using antibodies specific for NF-κB subunits showed the higher intensity exercise was associated with p65 (RelA) in the activated NF-κB complex while the NF-κB complex in hearts from animals exercised at the lower intensity was comprised primarily of p50. These data suggest exercise is capable of activating myocardial NF-κB and that a threshold for the activation of specific NF-κB subunits may exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adcock IM, Caramori G (2001) Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol 79:376–384

    Article  CAS  PubMed  Google Scholar 

  • Aoi W, Naito Y, Takanami Y, Kawai Y, Sakuma K, Ichikawa H, Yoshida N, Yoshikawa T (2004) Oxidative stress and delayed-onset muscle damage after exercise. Free Rad Biol Med 4:480–487

    Article  Google Scholar 

  • Bakkar N, Wang J, Ladner KJ, Wang H, Dahlman JM, Carathers M, Acharyya S, Rudnicki MA, Hollenbach AD, Guttridge DC (2008) IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol 180:787–802

    Article  CAS  PubMed  Google Scholar 

  • Baldwin A (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14:1649–1681

    Article  Google Scholar 

  • Bar-Shai M, Carmeli E, Ljubuncic P, Reznick AZ (2008) Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-κB activation. Free Radic Biol Med 44:202–214

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohé R, Bilgin B, Eickemeier S, Hipskind R, Singh M, Szamel M, Resch K (1996) The NF-κB heterodimer/homodimer balance and IL-1 stimulated IL-2 production in murine T lymphocytes. Biofactors 5:169–174

    Google Scholar 

  • Cai D, Frantz JD, Tawa NE, Melendez PA, Oh BC, Lidov HGW, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKb/NF-kB activation causes severe muscle wasting in mice. Cell 119:285–298

    Article  CAS  PubMed  Google Scholar 

  • Durham W, Li YP, Gerken E, Farid M, Arbogast S, Wolfe R, Reid M (2004) Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei. J Appl Physiol 97:1740–1745

    Article  CAS  PubMed  Google Scholar 

  • Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22:1115–1126

    Article  PubMed  Google Scholar 

  • Frier BC, Noble EG, Locke M (2008) Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappa B activation and expression. Cell Stress Chaperones 13:287–296

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD (2006) Introduction to NF-κB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  • Grimm S, Baeuerle PA (1993) The inducible transcription factor NF-κB: structure-function relationship of its protein subunits. Biochem Journal 290:297–308

    CAS  Google Scholar 

  • Ho RC, Hirshman MF, Li Y, Cai D, Farmer JR, Aschenbach WG, Witczak CA, Shoelson SE, Goodyear LJ (2005) Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 289:C794–C801

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Natoli G, Ghosh G (2006) Transcriptional regulation via the NF-κB signalling module. Oncogene 25:6706–6716

    Article  CAS  PubMed  Google Scholar 

  • Hollander J, Fiebig R, Gore M, Ookawara T, Ohno H, Ji LL (2001) Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflügers Arch 442:426–434

    Article  CAS  PubMed  Google Scholar 

  • Hunter RB, Kandarian SC (2004) Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114:1504–1511

    CAS  PubMed  Google Scholar 

  • Hunter R, Stevenson E, Koncarevic A, Mitchell-Felton H, Essig D, Kandarian S (2002) Activation of an alternative NF-κB pathway in skeletal muscle during disuse atrophy. FASEB J 16:529–538

    Article  CAS  PubMed  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J (2004) Acute exercise activates nuclear factor (NF)-κB signalling pathway in rat skeletal muscle. FASEB J 18:1499–1506

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  CAS  PubMed  Google Scholar 

  • Kramer H, Goodyear L (2007) Exercise, MAPK, and NF-κB signalling in skeletal muscle. J Appl Physiol 103:388–395

    Article  CAS  PubMed  Google Scholar 

  • Lira FS, Koyama CH, Yamashita AS, Rosa JC, Zanchi NE, Batista ML Jr, Seelaender MC (2009) Chronic exercise decreases cytokine production in healthy rat skeletal muscle. Cell Biochem Funct 27:458–461

    Article  CAS  PubMed  Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M (2004) Canonical pathway of nuclear factor kB activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis in human atherosclerosis. PNAS 101:5634–5639

    Article  CAS  PubMed  Google Scholar 

  • Pérez P, Page A, Jorcano JL (2000) Role of phosphorylated p50- NF-κB in the ultraviolet response of mouse skin. Mol Carcinog 27:272–279

    Article  PubMed  Google Scholar 

  • Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 25:6717–6730

    Article  CAS  PubMed  Google Scholar 

  • Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293:1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Son YH, Jeong YT, Lee KA, Choi KH, Kim SM, Rhim BY, Kim K (2008) Roles of MAPK and NF-kappaB in interleukin-6 induction by lipopolysaccharide in vascular smooth muscle cells. J Cardiovasc Pharmacol 51:71–77

    Article  CAS  PubMed  Google Scholar 

  • Sun SC, Ley SC (2008) New insights into NF-kappaB regulation and function. Trends Immunol 29:469–478

    Article  CAS  PubMed  Google Scholar 

  • Veneroso CT, Tuñón MJ, Gonzales-Gallego J, Collado PS (2009) Melatonin reduces cardiac inflammatory injury induced by acute exercise. J Pineal Res 47:184–191

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Hussain S, Zheng Y, Sanjabi S, Ouaaz F, Beg AA (2007) Distinct roles of different NF-kB subunits in regulating inflammatory and T cell stimulatory gene expression in dendritic cells. J Immunol 178:6777–6788

    CAS  PubMed  Google Scholar 

  • Werner S, Barken D, Hoffmann A (2005) Stimulus specificity of gene specifity of gene expression programs determined by temporal control of IKK activity. Science 309:1857–1861

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Locke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balan, M., Locke, M. Acute exercise activates myocardial nuclear factor kappa B. Cell Stress and Chaperones 16, 105–111 (2011). https://doi.org/10.1007/s12192-010-0217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0217-7

Keywords

Navigation