Skip to main content
Log in

Expression of uncoupling protein 3 in mitochondria protects against stress-induced myocardial injury: a proteomic study

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

It has been confirmed that stress plays an important role in the induction and development of cardiovascular diseases, but its mechanism and molecular basis remain unknown. In the present study, a myocardial injury model induced by restraint stress was established in rat. To screen for the related proteins involved in stress-induced myocardial injury, proteomic techniques based on 2-DE and mass spectrometry were used. In our results, ten proteins were found to be altered. The expression of eight of these proteins was increased after restraint stress, including cardiac myosin heavy chain, dihydrolipoamide succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial aldehyde dehydrogenase, H+-transporting ATP synthase, albumin, and apolipoprotein A-I precursor. The expression of uncoupling protein 3 (UCP3) and mitochondrial aconitase was decreased. Most of the proteins were related to energy metabolism. Further research indicated that UCP3 may mediate the myocardial cell response induced by restraint stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

NE:

norepinephrine

MEM:

minimum essential medium

PTP:

permeability transition pore

2-DE:

two-dimensional gel electrophoresis

UCP3:

uncoupling protein 3

References

  • Barger JL, Barnes BM, Boyer BB (2006) Regulation of UCP1 and UCP3 in arctic ground squirrels and relation with mitochondrial proton leak. J Appl Physiol 101:339–347

    Article  CAS  PubMed  Google Scholar 

  • Batandier C, Leverve X, Fontaine E (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol chem 279(17):17197–17204

    Article  CAS  PubMed  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  CAS  PubMed  Google Scholar 

  • Choi CS, Fillmore JJ, Kim JK (2007) Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest 117:1995–2003

    Article  CAS  PubMed  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on new mitochondrial biology. Mol Aspects Med 25:365–451

    CAS  PubMed  Google Scholar 

  • Feuerstein GZ, Young PR (2000) Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathway. Cardiovasc Res 45:560–569

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2·−), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  • Galea LAM, McEwen BS, Tanapat P (1997) Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neurosci 81:689–697

    Article  CAS  Google Scholar 

  • Hamidi AL, Liepnieks JJ, Hamidi AK (1999) Hereditary amyloid cardiomyopathy caused by a variant apolipoprotein A1. Am J Pathol 154(1):221–227

    Google Scholar 

  • Iñarrea P, Moini H, Han D, Cadenas E (2007) Mitochondrial respiratory chain and thioredoxin reductase regulate intermembrane Cu, Zn-superoxide dismutase activity: implications for mitochondrial energy metabolism and apoptosis. Biochem J 405(1):173–179

    PubMed  Google Scholar 

  • Jungblut P, Thiede B (1997) Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom Rev 16(3):145–162

    Article  CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  PubMed  Google Scholar 

  • Laredo R, Monserrat L, Hermida-Prieto M (2006) Beta-myosin heavy-chain gene mutations in patients with hypertrophic cardiomyopathy. Rev Esp Cardiol 59(10):1008–1018

    Article  PubMed  Google Scholar 

  • Liu X, Qian L, Gong J, Shen J, Zhang X, Qian X (2004) Proteomic analysis of mitochondrial proteins in cardiomyocytes from chronic stressed rat. Proteomics 4(10):3167–3176

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Jiang YY, Liu SY, Wang K, Cao J, Zhao YF (2005) Inducement effect of (DIPP-L-Trp)2-L-Lys-OCH3 on apoptosis of K562 cells through mitochondrial-dependent pathway. Ai Zheng 24(4):448–453

    CAS  PubMed  Google Scholar 

  • Lowell BB (1993) Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366:740–742

    Article  CAS  PubMed  Google Scholar 

  • Marcil M, Bourduas K, Ascah A, Burelle Y (2006) Exercise training induces respiratory substrate-specific decrease in Ca2+-induced permeability transition pore opening in heart mitochondria. Am J Physiol Heart Circ Physiol 290:1549–1557

    Article  Google Scholar 

  • Mattson MP, Liu D (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 304(3):539–549

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van RH (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  • Perier C, Tieu K, Guegan C (2005) Complex I deficiency primes Bax dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA 102:19126–19131

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Song X, Ren H, Gong J, Suqi C (2004) Mitochondrial mechanism of heat stress-induced injury in rat cardiomyocyte. Cell Stress Chaperones 9:281–293

    Article  CAS  PubMed  Google Scholar 

  • Raquel P, María GF, Matías DS, Juan EP, Gloria D, Marian C, Jordi M, Inma CC (2008) Mitochondrial protection by low doses of insulin-like growth factor-Iin experimental cirrhosis. World J Gastroenterol 14(17):2731–2739

    Article  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  CAS  PubMed  Google Scholar 

  • Ricquier D, Bouillaud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2:161–179

    Article  Google Scholar 

  • Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Shadel GS (2005) Mitochondrial DNA, aconitase ‘wraps’ it up. Trends Biochem Sci 30(6):294–296

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 363:100–124

    Google Scholar 

  • Tórtora V, Quijano C, Freeman B (2007) Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radic Biol Med 42(7):1075–1088

    Article  PubMed  Google Scholar 

  • Vidalpuig AJ, Grujic D, Zhang CY (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266

    Article  CAS  Google Scholar 

  • Wang XX, Liu XH, Kong RR, Zhan R, Wang XM, Leng X, Gong JB, Duan M, Wang LQ, Wu L, Qian LJ (2009) NGFI-B targets mitochondria and induces cardiomyocyte apoptosis in restraint-stressed rats by mediating energy metabolism disorder. Cell Stress Chaperones 14(6):639–648

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wang W, Qian L (2007) Hsp70 may protect cardiomyocytes from stress-induced injury by inhibiting Fas-mediated apoptosis. Cell Stress Chaperones 12(1):83–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grants from the National Natural Science Foundation of China (No. 30770843, No. 30430590).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjia Qian.

Additional information

Xinxing Wang and Jingbo Gong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Gong, J., Liu, X. et al. Expression of uncoupling protein 3 in mitochondria protects against stress-induced myocardial injury: a proteomic study. Cell Stress and Chaperones 15, 771–779 (2010). https://doi.org/10.1007/s12192-010-0185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-010-0185-y

Keywords

Navigation