Skip to main content
Log in

Low concentration of GA activates a preconditioning response in HepG2 cells during oxidative stress—roles of Hsp90 and vimentin

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Oxidative stress can be a significant cause of cell death and apoptosis. We performed studies in HepG2 cells to explore whether prior exposure to oxidative stress (“oxidative preconditioning”) and geldanamycin (GA) treatment can protect the cell from damage caused by subsequent oxidative insults. The cells were treated with 10 nM GA for 24 h before oxidative stress. Oxidative preconditioning was achieved by 2 h exposures to H2O2 (50 μM) separated by a 10-h recovery period in normal culture medium. Oxidative stress was induced by exposure to 500 μM H2O2 for 24 h. The effects of GA and oxidative preconditioning were investigated on the formation of Hsp90, vimentin, insoluble vimentin aggregates, and cleavage of vimentin in a cell culture model of oxidative stress. GA treatment leads to enhanced expression of Hsp90 and vimentin and to inhibition of vimentin protein aggregation. Similar results were obtained by oxidative preconditioning. It is confirmed that low concentrations of GA protected HepG2 cells from subsequent oxidative stress by increasing the levels of Hsp90 and by alleviating the extent of cell apoptosis induced by oxidative stress, which is similar to oxidative preconditioning. However, in contrast to preconditioning, GA treatment obviously changed binding activity of Hsp90 to vimentin cleavages. All the above indicated that low concentrations of GA treatment triggered cell protection from oxidative stress. Both the level of Hsp90 and its ability to bind with vimentin were changed by low concentrations of GA and might contribute to oxidative stress protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

17-AAG:

17-Allylamino-17-demethoxygeldanamycin

GA:

Geldanamycin

Hsp90:

Heat shock protein 90

DMSO:

Dimethyl sulfoxide

FITC:

Fluorescein isothiocyanate

GA:

Geldanamycin

H2O2 :

Hydrogen peroxide

Hsp:

Heat shock protein

MTT:

3[4,5-dimethylthiazole-2-yl]2,5-diphenyltetrazolium bromide

PBS:

Phosphate-buffered saline

References

  • Belichenko I, Morishima N, Separovic D (2001) Caspase-resistant vimentin suppresses apoptosis after photodynamic treatment with a silicon phthalocyanine in Jurkat cells. Arch Biochem Biophys 390:57–63. doi:10.1006/abbi.2001.2365

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553. doi:10.1126/science.1068999

    Article  PubMed  CAS  Google Scholar 

  • Byun Y, Chen F, Chang R, Trivedi M, Green KJ, Cryns VL (2001) Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ 8:443–450. doi:10.1038/sj.cdd.4400840

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Lee VMY, Trojanowski JQ (2004) The cytoskeleton in neurodegenerative diseases. J Pathol 204:438–449. doi:10.1002/path.1650

    Article  PubMed  CAS  Google Scholar 

  • Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6:699–706. doi:10.1038/ncb0804-699

    Article  PubMed  CAS  Google Scholar 

  • Diana MT, Guo ZT, Aida H, Jian L (2005) Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15:608–617. doi:10.1016/j.tcb.2005.09.004

    Article  Google Scholar 

  • Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras GK, Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498. doi:10.1038/35078107

    Article  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498. doi:10.1038/35078107

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Newton AC (2002) The turn motif is a phosphorylation switch that regulates the binding of Hsp90 to protein kinase C. J Biol Chem 277:31585–31592. doi:10.1074/jbc.M204335200

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb LG, Vicart P, Goebel HH, Dalakas MC (2004) Desmin myopathy. Brain 127:723–734. doi:10.1093/brain/awh033

    Article  PubMed  CAS  Google Scholar 

  • Gotz J, Ittner LM, Schonrock N (2006) Alzheimer's disease and frontotemporal dementia: prospects of a tailored therapy. Med J Aust 185:381–384

    PubMed  Google Scholar 

  • Hong H, Huizhen W, Hong L, Stanley N, Zhiguo W (2001) Oxidative preconditioning and apoptosis in L-cells—roles of protein kinase B and mitogen-activated protein kinases. J Biol Chem 276:26357–26364. doi:10.1074/jbc.M011136200

    Article  Google Scholar 

  • Ivaska J, Pallari HM, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313:2050–2062. doi:10.1016/j.yexcr.2007.03.040

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Buchner J (1994) Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 19:205–211. doi:10.1016/0968-0004(94)90023-X

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Lilie H, Meyer I, Buchner J (1995a) Transient interaction of hsp90 with early unfolding intermediates of citrate synthase—implications for heat shock in vivo. J Biol Chem 270:7288–7294. doi:10.1074/jbc.270.13.7288

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Meyer I, Bugl H, Andre S, Bardwell JC, Buchner J (1995b) Structural organization of prokaryotic and eukaryotic Hsp90. Influence of divalent cations on structure and function. J Biol Chem 270:14412–14419. doi:10.1074/jbc.270.24.14412

    Article  PubMed  CAS  Google Scholar 

  • Jiro F, Shuji B, Yu Y, Fei W, Yuji O, Takeo Y, Toshihiko I (2003) High molecular weight vimentin complex is formed after proteolytic digestion of vimentin by caspase-3: detection by sera of patients with interstitial pneumonia. Microbiol Immunol 47(6):447–451

    Google Scholar 

  • Katschinski DM, Le L, Heinrich D, Wagner KF, Hofer T, Schindler SG, Wenger RH (2002) Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity. J Biol Chem 277:9262–9267. doi:10.1074/jbc.M110377200

    Article  PubMed  CAS  Google Scholar 

  • Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 5:76–86. doi:10.1379/1466-1268(2000)005<0076:MOSRAE>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Kurt Z, Conny S, Andrea F, Elke J, Helmut D (2004) Intermediate filament protein inclusions. Methods Cell Biol 78:205–228. doi:10.1016/S0091-679X(04)78008-5

    Article  Google Scholar 

  • Lai BT, Chin NW, Stanek AE, Keh W, Lanks KW (1984) Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. Mol Cell Biol 4:2802–2810

    PubMed  CAS  Google Scholar 

  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275:10519–10526. doi:10.1074/jbc.275.14.10519

    Article  PubMed  CAS  Google Scholar 

  • McClellan AJ, Scott MD, Frydman J (2005) Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell 121:739–748. doi:10.1016/j.cell.2005.03.024

    Article  PubMed  CAS  Google Scholar 

  • Miyata Y, Yahara I (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047

    PubMed  CAS  Google Scholar 

  • Morishima N (1999) Changes in nuclear morphology during apoptosis correlate with vimentin cleavage by different caspases located either upstream or downstream of Bcl-2 action. Genes Cells 4:401–414. doi:10.1046/j.1365-2443.1999.00270.x

    Article  PubMed  CAS  Google Scholar 

  • Muller K, Dulku S, Hardwick SJ, Skepper JN, Mitchinson MJ (2001) Changes in vimentin in human macrophages during apoptosis induced by oxidized low density lipoprotein. Atherosclerosis 156:133–144. doi:10.1016/S0021-9150(00)00641-9

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins. J Cell Sci 115:2809–2816

    PubMed  CAS  Google Scholar 

  • Nomura M, Nomura N, Newcomb EW, Lukyanov Y, Tamasdan C, Zagzag D (2004) Geldanamycin induces mitotic catastrophe and subsequent apoptosis in human glioma cells. J Cell Physiol 201:374–384. doi:10.1002/jcp.20090

    Article  PubMed  CAS  Google Scholar 

  • Omary MB, Coulombe PA, McLean WHI (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351:2087–2100. doi:10.1056/NEJMra040319

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Lane EB (2007) Intermediate filaments and stress. Exp Cell Res 313:2244–2254. doi:10.1016/j.yexcr.2007.04.023

    Article  PubMed  CAS  Google Scholar 

  • Prasad SC, Thraves PJ, Kuettel MR, Srinivasarao GY, Dritschilo A, Soldatenkov VA (1998) Apoptosis-associated proteolysis of vimentin in human prostate epithelial tumor cells. Biochem Biophys Res Commun 249:332–338. doi:10.1006/bbrc.1998.9137

    Article  PubMed  CAS  Google Scholar 

  • Price JT, Quinn JM, Sims NA, Vieusseux J, Waldeck K, Docherty SE, Myers D, Nakamura A, Waltham MC, Gillespie MT, Thompson EW (2005) The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 65:4929–4938. doi:10.1158/0008-5472.CAN-04-4458

    Article  PubMed  CAS  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75. doi:10.1016/S0092-8674(00)80314-1

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Hendershot LM, Freeman BC (2007) The cellular world according to Hsp90. Nat Struct Mol Biol 2:90–94. doi:10.1038/nsmb0207-90

    Article  Google Scholar 

  • Salim S, Eikenburg DC (2007) Role of 90-kDa heat shock protein (Hsp 90) and protein degradation in regulating neuronal levels of G protein-coupled receptor kinase 3. J Pharmacol Exp Ther 320:1106–1112. doi:10.1124/jpet.106.114835

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishefsky S, Rosen N, Hartl FU (1996) Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci U S A 93:4536–14541. doi:10.1073/pnas.93.25.14536

    Article  Google Scholar 

  • Schumacher JA, Crockett DK, Kojo SJ, Megan SL (2007) Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 7:2603–2616. doi:10.1002/pmic.200700108

    Article  PubMed  CAS  Google Scholar 

  • Shaknovich R, Shue G, Kohtz DS (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol 12:5059–5068

    PubMed  CAS  Google Scholar 

  • Sittler A, Waelter S, Wedemeyer N, Hasenbank R, Scherzinger E, Eickhoff H, Bates GP, Lehrach H, Wanker EE (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell 2:427–436. doi:10.1016/S1097-2765(00)80142-2

    Article  PubMed  CAS  Google Scholar 

  • Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits Huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10(12):1307–1315. doi:10.1093/hmg/10.12.1307

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Whitesell L, Nair SC, Chen S, Prapapanich V, Rimerman RA (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 15:6804–6812

    PubMed  CAS  Google Scholar 

  • Soti C, Radics L, Yahara I, Csermely P (1998) Interaction of vanadate oligomers and permolybdate with the 90-kDa heat-shock protein, Hsp90. Eur J Biochem 255:611–617

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    Article  PubMed  CAS  Google Scholar 

  • Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  PubMed  CAS  Google Scholar 

  • van Engeland M, Kuijpers HJ, Ramaekers FC, Reutelingsperger CP, Schutte B (1997) Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp Cell Res 235:421–430

    Article  PubMed  Google Scholar 

  • Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    Article  PubMed  CAS  Google Scholar 

  • Wiech H, Buchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358:169–170

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone mediated protein folding in the cytosol. Mol Cell 5:781–791

    CAS  Google Scholar 

  • Zhang MH, Lee JS, Kim HJ, Jin D, Kim J, Lee KJ, Seo JS (2006) HSP90 protects apoptotic cleavage of vimentin in geldanamycin-induced apoptosis. Mol Cell Biochem 281:111–121

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (30500580), the National Natural Science Foundation of Guangdong Province (5300465), and the National Basic Research Program of China, No. 2006CB504100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Kang, H. & Zou, F. Low concentration of GA activates a preconditioning response in HepG2 cells during oxidative stress—roles of Hsp90 and vimentin. Cell Stress and Chaperones 14, 381–389 (2009). https://doi.org/10.1007/s12192-008-0092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0092-7

Keywords

Navigation