Skip to main content
Log in

Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

During the annual cycle, oysters are exposed to seasonal slow changes in temperature, but during emersion at low tide on sunny summer days, their internal temperature may rise rapidly, resulting in acute heat stress. We experimentally exposed oysters to a 1-h acute thermal stress and investigated the transcriptional expression level of some genes involved in cell stress defence mechanisms, including chaperone proteins (heat shock proteins Hsp70, Hsp72 and Hsp90 (HSP)), regulation of oxidative stress (Cu-Zn superoxide dismutase, metallothionein (MT)), cell detoxification (glutathione S-transferase sigma, cytochrome P450 and multidrug resistance (MDR1)) and regulation of the cell cycle (p53). Gene mRNA levels were quantified by reverse transcription-quantitative polymerase chain reaction and expressed as their ratio to actin mRNA, used as a reference. Of the nine genes studied, HSP, MT and MDR1 mRNA levels increased in response to thermal stress. We compared the responses of oysters exposed to acute heat shock in summer and winter and observed differences in terms of magnitude and kinetics. A larger increase was observed in September, with recovery within 48 h, whereas in March, the increase was smaller and lasted more than 2 days. The results were also compared with data obtained from the natural environment. Though the functional molecule is the protein and information at the mRNA level only has limitations, the potential use of mRNAs coding for cell stress defence proteins as early sensitive biomarkers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bellmann K, Jaattela M, Wissing D, Burkart V, Kolb H (1996) Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Lett 391:185–188. doi:10.1016/0014-5793(96)00730-2

    Article  PubMed  CAS  Google Scholar 

  • Boutet I, Tanguy A, Rousseau S, Auffret M, Moraga D (2003) Molecular identification and expression of heat shock cognate 70 (hsc70) and heat shock protein 70 (hsp70) genes in the Pacific oyster Crassostrea gigas. Cell Stress Chaperones 8:76–85. doi:10.1379/1466-1268(2003)8<76:MIAEOH>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Chin K-V, Tanaka S, Darlington G, Pastan I, Gottesman MM (1990) Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 265:221–226

    PubMed  CAS  Google Scholar 

  • Clegg JS, Cher GN, Rifkin E, Friedman CS (1998) Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Mol Mar Biol Biotechnol 7:21–30

    CAS  Google Scholar 

  • Costil K, Royer J, Ropert M, Soletchnik P, Mathieu M (2005) Spatio-temporal variations in biological performances and summer mortality of the Pacific oyster Crassostrea gigas in Normandy (France). Helgoland Marine Research 59:286–300. doi:10.1007/s10152-005-0004-5

    Article  Google Scholar 

  • Cruz-Rodríguez L, Baucum A, Soudant P, Chu FLE, Hale R (2000) Effects of PCBs sorbed to algal paste and sediments on the stress protein response (HSP70 family) in the eastern oyster, Crassostrea virginica. Mar Environ Res 50:341–345. doi:10.1016/S0141-1136(00)00079-9

    Article  PubMed  Google Scholar 

  • Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. J Biol Chem 271:26233–26241. doi:10.1074/jbc.271.42.26233

    Article  PubMed  CAS  Google Scholar 

  • Delaporte M, Soudant P, Moal J, Lambert C, Quere C, Miner P, Choquet G, Paillard C, Samain JF (2003) Effect of a mono-specific algal diet on immune functions in two bivalve species—Crassostrea gigas and Ruditapes philippinarum. J Exp Biol 206:3053–3064. doi:10.1242/jeb.00518

    Article  PubMed  CAS  Google Scholar 

  • Eufemia NA, Epel D (2000) Induction of the multixenobiotic defense mechanism (MXR), P-glycoprotein, in the mussel Mytilus californianus as a general cellular response to environmental stresses. Aquat Toxicol 49:89–100. doi:10.1016/S0166-445X(99)00068-5

    Article  PubMed  CAS  Google Scholar 

  • Farcy E, Voiseux C, Lebel J-M, Fievet B (2007) Seasonal changes in mRNA encoding for cell stress markers in the oyster Crassostrea gigas exposed to radioactive discharges in their natural environment. Sci Total Environ 374:328–341. doi:10.1016/j.scitotenv.2006.11.014

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243. doi:10.1146/annurev.physiol.61.1.243

    Article  PubMed  CAS  Google Scholar 

  • Fourie AM, Hupp TR, Lane DP, Sang BC, Barbosa MS, Sambrook JF, Gething MJ (1997) HSP70 binding sites in the tumor suppressor protein p53. J Biol Chem 272:19471–19479. doi:10.1074/jbc.272.31.19471

    Article  PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. Biol Bull 272:18033–18037

    CAS  Google Scholar 

  • Hamdoun AM, Cheney DP, Cherr GN (2003) Phenotypic plasticity of HSP70 and HSP70 gene expression in the pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Biol Bull 205:160–169. doi:10.2307/1543236

    Article  PubMed  CAS  Google Scholar 

  • Huvet A, Herpin A, Dégremont L, Labreuche Y, Samain JF, Cunningham C (2004) The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene 343:211–220. doi:10.1016/j.gene.2004.09.008

    Article  PubMed  CAS  Google Scholar 

  • Jaattela M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43. doi:10.1006/excr.1999.4455

    Article  PubMed  CAS  Google Scholar 

  • Kang CM, Park KP, Cho CK, Seo JS, Park WY, Lee SJ, Lee YS (2002) Hspa4 (HSP70) is involved in the radioadaptive response: results from mouse splenocytes. Radiat Res 157:650–655. doi:10.1667/0033-7587(2002)157[0650:HHIIIT]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    PubMed  CAS  Google Scholar 

  • Le Roux F, Gay M, Lambert C, Waechter M, Poubalanne S, Chollet B, Nicolas JL, Berthe F (2002) Comparative analysis of Vibrio splendidus-related strains isolated during Crassostrea gigas mortality events. Aquat Living Resour 15:251–258. doi:10.1016/S0990-7440(02)01176-2

    Article  Google Scholar 

  • Lesser MP, Kruse VA (2004) Seasonal temperature compensation in the horse mussel, Modiolus modiolus: metabolic enzymes, oxidative stress and heat shock proteins. Comp Biochem Physiol A Mol Integr Physiol 137:495–504. doi:10.1016/j.cbpb.2003.10.022

    Article  PubMed  Google Scholar 

  • Li GC, Werb Z (1982) Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci U S A 79:3218–3222. doi:10.1073/pnas.79.10.3218

    Article  PubMed  CAS  Google Scholar 

  • Li Z-H, Zhu Y-J, Lit X-T (1997) Wild-type p53 gene increases MDR1 gene expression but decreases drug resistance in an MDR cell line KBV200. Cancer Lett 119:177–184. doi:10.1016/S0304-3835(97)00267-X

    Article  PubMed  CAS  Google Scholar 

  • Luedeking A, Koehler A (2004) Regulation of expression of multixenobiotic resistance (MXR) genes by environmental factors in the blue mussel Mytilus edulis. Aquat Toxicol 69:1–10. doi:10.1016/j.aquatox.2004.03.003

    Article  PubMed  CAS  Google Scholar 

  • Minier C, Borghi V, Moore MN, Porte C (2000) Seasonal variation of MXR and stress proteins in the common mussel, Mytilus galloprovincialis. Aquat Toxicol 50:167–176. doi:10.1016/S0166-445X(99)00104-6

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Sarge KD, Abravaya K (1992) Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem 267:21987–21990

    PubMed  CAS  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    PubMed  CAS  Google Scholar 

  • Mosser DD, Martin LH (1992) Induced thermotolerance to apoptosis in a human T lymphocyte cell line. J Cell Physiol 151:561–570. doi:10.1002/jcp.1041510316

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Lee SJ, Chung HY, Kim TH, Cho CK, Yoo SY, Lee YS (2000) Inducible heat-shock protein 70 is involved in the radioadaptive response. Radiat Res 153:318–326. doi:10.1667/0033-7587(2000)153[0318:IHSPII]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Piano A, Valbonesi P, Fabbri E (2004) Expression of cytoprotective proteins, heat shock protein 70 and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals. Cell Stress Chaperones 9:134–142. doi:10.1379/483.1

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170. doi:10.1006/excr.1996.0070

    Article  PubMed  CAS  Google Scholar 

  • Shamseldin AA, Clegg JS, Friedman CS, Cherr GN, Pillai MC (1997) Induced thermotolerance in the Pacific oyster, Crassostrea gigas. J Shellfish Res 16:487–491

    Google Scholar 

  • Silar P, Butler G, Thiele DJ (1991) Heat shock transcription factor activates transcription of the yeast metallothionein gene. Mol Cell Biol 11:1232–1238

    PubMed  CAS  Google Scholar 

  • Simon MM, Reikerstorfer A, Schwarz A, Krone C, Luger TA, Jaattela M, Schwarz T (1995) Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest 95:926–933. doi:10.1172/JCI117800

    Article  PubMed  CAS  Google Scholar 

  • Soletchnik P, Lambert C, Costil K (2005) Summer mortality of Crassostrea gigas (Thunberg) in relation to environmental rearing conditions. J Shellfish Res 24:197–207

    Google Scholar 

  • Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366. doi:10.1016/0092-8674(91)90452-5

    Article  PubMed  CAS  Google Scholar 

  • Snyder MJ, Girvetz E, Mulder EP (2001) Induction of marine mollusc stress proteins by chemical or physical stress. Arch Environ Contam Toxicol 41:22–29. doi:10.1007/s002440010217

    Article  PubMed  CAS  Google Scholar 

  • Sturzbecher HW, Chumakov P, Welch WJ, Jenkins JR (1987) Mutant p53 proteins bind hsp 72/73 cellular heat shock-related proteins in SV40-transformed monkey cells. Oncogene 1:201–211

    PubMed  CAS  Google Scholar 

  • Tchénio T, Havard M, Martinez LA, Dautry F (2006) Heat shock-independent induction of multidrug resistance by heat shock factor 1. Mol Cell Biol 26:580–591

    Article  PubMed  Google Scholar 

  • Wegele H, Müller L, Buchner J (2004) Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol, Biochem Pharmacol 151:1–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Emilie FARCY was supported by fellowships from the Institute of Radioprotection and Nuclear Safety (IRSN) and “Région Basse-Normandie”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Fiévet.

Additional information

Concise summary

We addressed a set of genes involved in cell stress defence mechanisms as biomarkers to investigate the response of the Pacific oyster to a one-hour acute heat shock in the laboratory. The transcriptional levels of the genes could be used as early sensitive biomarkers, provided their ranges of natural variability and potential seasonal cycles were taken into account. Different responses were observed depending on the season when the experiments were performed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farcy, É., Voiseux, C., Lebel, JM. et al. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress. Cell Stress and Chaperones 14, 371–380 (2009). https://doi.org/10.1007/s12192-008-0091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0091-8

Keywords

Navigation