Skip to main content

Advertisement

Log in

Unfolding the relationship between secreted molecular chaperones and macrophage activation states

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Over the last 20 years, it has emerged that many molecular chaperones and protein-folding catalysts are secreted from cells and function, somewhat in the manner of cytokines, as pleiotropic signals for a variety of cells, with much attention being focused on the macrophage. During the last decade, it has become clear that macrophages respond to bacterial, protozoal, parasitic and host signals to generate phenotypically distinct states of activation. These activation states have been termed ‘classical’ and ‘alternative’ and represent not a simple bifurcation in response to external signals but a range of cellular phenotypes. From an examination of the literature, the hypothesis is propounded that mammalian molecular chaperones are able to induce a wide variety of alternative macrophage activation states, and this may be a system for relating cellular or tissue stress to appropriate macrophage responses to restore homeostatic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Annu Rev Immunol 2:283–318 doi:10.1146/annurev.iy.02.040184.001435

    PubMed  CAS  Google Scholar 

  • Aliberti J, Valenzuela JG, Carruthers VB et al (2003) Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol 4:485–490 doi:10.1038/ni915

    PubMed  CAS  Google Scholar 

  • Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26 doi:10.1007/978-0-387-39975-1_2

    PubMed  Google Scholar 

  • Asea A, Kraeft S-K, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) Hsp70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med 6:435–442 doi:10.1038/74697

    PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034 doi:10.1074/jbc.M200497200

    PubMed  CAS  Google Scholar 

  • Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ (2004) Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci 117:3645–3657 doi:10.1242/jcs.01214

    PubMed  CAS  Google Scholar 

  • Babaahmady K, Oehlmann W, Singh M, Lehner T (2007) Inhibition of human immunodeficiency virus type 1 infection of human CD4+ T cells by microbial HSP70 and the peptide epitope 407–426. J Virol 81:3354–3360 doi:10.1128/JVI.02320-06

    PubMed  CAS  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783:641–650 doi:10.1016/j.bbamcr.2008.02.003

    PubMed  CAS  Google Scholar 

  • Bernhagen J, Krohn R, Lue H et al (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596 doi:10.1038/nm1567

    PubMed  CAS  Google Scholar 

  • Bertini R, Howard OMZ, Dong H-F et al (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes and T cells. J Exp Med 189:1783–1789 doi:10.1084/jem.189.11.1783

    PubMed  CAS  Google Scholar 

  • Billiet L, Furman C, Larigauderie G, Copin C, Brand K, Fruchart JC, Rouis M (2005) Extracellular human thioredoxin-1 inhibits lipopolysaccharide-induced interleukin-1beta expression in human monocyte-derived macrophages. J Biol Chem 280:40310–40318 doi:10.1074/jbc.M503644200

    PubMed  CAS  Google Scholar 

  • Bomford R, Henderson B (1989) Interleukin-1, inflammation and disease. North Holland, Elsevier

    Google Scholar 

  • Cascales E (2008) The type VI secretion toolkit. EMBO Rep 9:735–741 doi:10.1038/embor.2008.131

    PubMed  CAS  Google Scholar 

  • Cavanagh AC, Morton H (1994) The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222:551–560 doi:10.1111/j.1432-1033.1994.tb18897.x

    PubMed  CAS  Google Scholar 

  • Cicala C, Arthos J, Martinelli E, Censoplano N, Cruz CC, Chung E et al (2005) R5 and X4 HIV envelopes induce distinct gene expression profiles in primary peripheral blood mononuclear cells. Proc Natl Acad Sci USA 103:3746–3751 doi:10.1073/pnas.0511237103

    Google Scholar 

  • Conway JP, KInter M (2006) Dual role of peroxiredoxin I in macrophage-derived foam cells. J Biol Chem 281:27991–28001 doi:10.1074/jbc.M605026200

    PubMed  CAS  Google Scholar 

  • Corrigall VM, Bodman-Smith MD, Fife MS et al (2001) The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J Immunol 166:1492–1498

    PubMed  CAS  Google Scholar 

  • Corrigall VM, Bodman-Smith M, Panayi GS (2005) BiP stimulation induces and anti-inflammatory gene activation profile in monocytes. Rheumatology 44(Suppl):48

    Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Capello F (2006) Heat shock protein 10 and signal transduction: a ‘capsula eburnea’ of carcinogenesis? Cell Stress Chaperones 11:287–294 doi:10.1379/CSC-200.1

    PubMed  CAS  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Letts 581:3702–3710 doi:10.1016/j.febslet.2007.05.039

    CAS  Google Scholar 

  • De AK, Kodys KM, Yeh BS, Miller-Graziano C (2000) Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J Immunol 165:3951–3958

    PubMed  CAS  Google Scholar 

  • Donnelly S, O’Neill SM, Sekiya M, Mulcahy G, Dalton JP (2005) Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect Immun 73:166–173 doi:10.1128/IAI.73.1.166-173.2005

    PubMed  CAS  Google Scholar 

  • Ettrich R, Brandt W Jr, Kopecký V, Baumruk V, Hofbauerová K, Pavlícek Z (2002) Study of chaperone-like activity of human haptoglobin: conformational changes under heat shock conditions and localization of interaction sites. Biol Chem 383:1667–1676 doi:10.1515/BC.2002.187

    PubMed  CAS  Google Scholar 

  • Fanghänel J, Fischer G (2004) Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front Biosci 9:3453–3478 doi:10.2741/1494

    PubMed  Google Scholar 

  • Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421 doi:10.1016/j.ceb.2004.06.003

    PubMed  CAS  Google Scholar 

  • Friedland JS, Shattock R, Remick DG, Griffin GE (1993) Mycobacterial 65-kDa heat shock protein induces release of proinflammatory cytokines from human monocytic cells. Clin Exp Immunol 91:58–62

    Article  PubMed  CAS  Google Scholar 

  • Gething M-J (1997) Guidebook to molecular chaperones and protein-folding catalysts. University Press, Oxford

    Google Scholar 

  • Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147:867–883 doi:10.1016/j.neuroscience.2007.02.055

    PubMed  CAS  Google Scholar 

  • Gobert AP, Bambou JC, Werts C, Balloy V, Chignard M, Moran AP, Ferrero RL (2004) Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-independent mechanism. J Biol Chem 279:245–250 doi:10.1074/jbc.M307858200

    PubMed  CAS  Google Scholar 

  • Goerdt S, Politz O, Schledzewski K et al (1999) Alternative versus classical activation of macrophages. Pathobiology 67:222–226 doi:10.1159/000028096

    PubMed  CAS  Google Scholar 

  • Golding H, Aliberti J, King LR, Manischewitz J, Andersen J, Valenzuela J, Landau NR, Sher A (2003) Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood 102:3280–3286 doi:10.1182/blood-2003-04-1096

    PubMed  CAS  Google Scholar 

  • Goldmann O, von Köckritz-Blickwede M, Höltje C, Chhatwal GS, Geffers R, Medina E (2007) Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 75:4148–4157 doi:10.1128/IAI.00181-07

    PubMed  CAS  Google Scholar 

  • Gordon S (1999) Macrophages and the immune system. In: Paul WE (ed) Fundamental immunology. 4th edn. Lippincott-Raven, Philidelphia, pp 533–545

    Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35 doi:10.1038/nri978

    PubMed  CAS  Google Scholar 

  • Gordon S (2007) Macrophage heterogeneity and tissue lipids. J Clin Invest 117:89–93 doi:10.1172/JCI30992

    PubMed  CAS  Google Scholar 

  • Hahn H, Kaufmann SH (1982) T lymphocyte-macrophage interactions in cellular antibacterial immunity. Immunobiology 161:361–368

    PubMed  CAS  Google Scholar 

  • Halcox JP, Shamaei-Tousi A, Steptoe A, Coates AR, Henderson B, Deanfield J (2005) Circulating human heat shock protein 60 in the blood of healthy teenagers: a novel determinant of endothelial dysfunction and early vascular injury? Arterioscler Thromb Vasc Biol 25:141–142 doi:10.1161/01.ATV.0000185832.34992.ff

    Google Scholar 

  • Harness J, Cavanagh A, Morton H, McCombe P (2003) A protective effect of early pregnancy factor on experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. J Neurol Sci 216:33–41 doi:10.1016/S0022-510X(03)00212-0

    PubMed  CAS  Google Scholar 

  • Helming L, Gordon S (2008) The molecular basis of macrophage fusion. Immunobiol 212:785–793 doi:10.1016/j.imbio.2007.09.012

    Google Scholar 

  • Henderson B, Poole S, Wilson M (1998) Bacteria-cytokine interactions in health and disease. Portland, London

    Google Scholar 

  • Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266 doi:10.1002/jcp.1041380206

    PubMed  CAS  Google Scholar 

  • Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM (2004) cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675 doi:10.1101/gr.2649204

    PubMed  CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271 doi:10.1146/annurev.bi.54.070185.001321

    PubMed  CAS  Google Scholar 

  • Holt PG (1986) Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. Clin Exp Immunol 63:261–270

    PubMed  CAS  Google Scholar 

  • Hu Y, Henderson B, Lund PA, Tormay P, Liu HL, Gurcha SS, Besra GS, Coates ARM (2008) A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable, but fails to induce an inflammatory response in animal models of infection. Infect Immun 76:1535–1546 doi:10.1128/IAI.01078-07

    PubMed  CAS  Google Scholar 

  • Johnson BJ, Le TT, Dobbin CA et al (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280:4037–4047 doi:10.1074/jbc.M411569200

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2008) Guideline for the nomenclature of the human heat shock proteins. Cell Stress Chaperones (in press)

  • Khan N, Alam K, Mande SC, Valluri VL, Hasnain SE, Mukhopadhyay S (2008) Mycobacterium tuberculosis heat shock protein 60 modulates immune response to PPD by manipulating the surface expression of TLR2 on macrophages. Cell Microbiol 10:1711–1722

    PubMed  CAS  Google Scholar 

  • Kim K-P, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332 doi:10.1111/j.1574-6968.2006.00140.x

    PubMed  CAS  Google Scholar 

  • Kirby AC, Meghji S, Nair SP et al (1995) The potent bone resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. J Clin Invest 96:1185–1194 doi:10.1172/JCI118150

    PubMed  CAS  Google Scholar 

  • Kleemann R, Kapurniotu A, Frank RW et al (1998) Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol 280:85–102 doi:10.1006/jmbi.1998.1864

    PubMed  CAS  Google Scholar 

  • Laudanski K, De A, Miller-Graziano C (2007) Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells. Eur J Immunol 37:2812–2824 doi:10.1002/eji.200636993

    PubMed  CAS  Google Scholar 

  • Lehner T, Wang Y, Whittall T, Bergmeier LA (2005) Heat shock proteins, their cell surface receptors and effects on the immune system. In: Henderson B, Pockley AG (eds) Molecular chaperones and cell signalling. Cambridge University Press, Cambridge, pp 160–178

    Google Scholar 

  • Lewthwaite JC, Coates ARM, Tormay P, Singh M, Mascagni P, Poole S, Roberts M, Sharp L, Henderson B (2001) Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (hsp 65) and contains a CD14-binding domain. Infect Immun 69:7349–7355 doi:10.1128/IAI.69.12.7349-7355.2001

    PubMed  CAS  Google Scholar 

  • Lewthwaite JC, George R, Lund PA, Poole S, Tormay P, Sharp L, Coates ARM, Henderson B (2002a) Rhizobium leguminosarum chaperonin 60.3, but not chaperonin 60.1, induces cytokine production by human monocytes: activity is dependent on interaction with cell surface CD14. Cell Stress Chaperones 7:130–136 doi:10.1379/1466-1268(2002)007<0130:RLCBNC>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Lewthwaite J, Owen N, Coates ARM, Henderson B, Steptoe AD (2002b) Circulating heat shock protein (Hsp)60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106:196–201 doi:10.1161/01.CIR.0000021121.26290.2C

    PubMed  CAS  Google Scholar 

  • Liu W, Nakamura H, Shioji K et al (2004) Thioredoxin-1 ameliorates myosin-induced autoimmune myocarditis by suppressing chemokine expressions and leukocyte chemotaxis in mice. Circulation 110:1276–1283 doi:10.1161/01.CIR.0000141803.41217.B6

    PubMed  CAS  Google Scholar 

  • Lynes MA, Zaffuto K, Unfricht DW, Marusov G, Samson JS, Yin X (2006) The physiological roles of extracellular metallothionein. Exp Biol Med (Maywood) 231:1548–1554

    CAS  Google Scholar 

  • Mackaness GB (1962) Cellular resistance to infection. J Exp Med 116:381–406 doi:10.1084/jem.116.3.381

    PubMed  CAS  Google Scholar 

  • Maguire M, Coates ARM, Henderson B (2002) Chaperonin 60 unfolds its secrets of cellular communication. Cell Stress Chaperones 7:317–329 doi:10.1379/1466-1268(2002)007<0317:CUISOC>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Mambula SS, Stevenson MA, Ogawa K, Calderwood SK (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43:168–175 doi:10.1016/j.ymeth.2007.06.009

    PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686 doi:10.1016/j.it.2004.09.015

    PubMed  CAS  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461 doi:10.2741/2692

    PubMed  CAS  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305 doi:10.1126/science.1071059

    PubMed  CAS  Google Scholar 

  • Meghji S, White PA, Nair SP et al (1997) Mycobacterium tuberculosis chaperonin 10 stimulates bone resorption: a potential contributory factor in Pott’s disease. J Exp Med 186:1241–1246 doi:10.1084/jem.186.8.1241

    PubMed  CAS  Google Scholar 

  • Meghji S, Lillicrap M, Maguire M, Tabona P, Gaston JSH, Poole S, Henderson B (2003) Human chaperonin 60 (Hsp60) stimulates bone resorption: structure/function relationships. Bone 33:419–425 doi:10.1016/S8756-3282(03)00117-0

    PubMed  CAS  Google Scholar 

  • Metchnikoff E (1905) Immunity to infective diseases. Cambridge University Press, London

    Google Scholar 

  • Miller-Graziano CL, De A, Laudanski K, Herrmann T, Bandyopadhyay S (2008) HSP27: an anti-inflammatory and immunomodulatory stress protein acting to dampen immune function. Novartis Found Symp 291:196–208 doi:10.1002/9780470754030.ch15

    PubMed  CAS  Google Scholar 

  • Moestrup SK, Møller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354 doi:10.1080/07853890410033171

    PubMed  CAS  Google Scholar 

  • Morton H, Rolfe B, Clunie GJ (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1:394–397 doi:10.1016/S0140-6736(77)92605-8

    PubMed  CAS  Google Scholar 

  • Nakamura H (2008) Extracellular functions of thioredoxin. Novartis Found Symp 291:184–192 (discussion 192–5, 221–224)

    PubMed  CAS  Google Scholar 

  • Nakamura H, Herzenberg LA, Bai J, Araya S, Kondo N, Nishinaka Y, Herzenberg LA, Yodoi J (2001a) Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc Natl Acad Sci U SA 98:15143–15148 doi:10.1073/pnas.191498798

    CAS  Google Scholar 

  • Nakamura H, De Rosa SC, Yodoi J, Holmgren A, Ghezzi P, Herzenberg LA, Herzenberg LA (2001b) Chronic elevation of plasma thioredoxin: inhibition of chemotaxis and curtailment of life expectancy in AIDS. Proc Natl Acad Sci U S A 98:2688–2693 doi:10.1073/pnas.041624998

    PubMed  CAS  Google Scholar 

  • Nathan CF, Murray HW, Weibe ME, Rubin BY (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158:670–689 doi:10.1084/jem.158.3.670

    PubMed  CAS  Google Scholar 

  • Noonan FP, Halliday WJ, Morton H, Clunie GJ (1979) Early pregnancy factor is immunosuppressive. Nature 278:649–651 doi:10.1038/278649a0

    PubMed  CAS  Google Scholar 

  • Panayi GS, Corrigall VM (2008) BiP, an anti-inflammatory ER protein, is a potential new therapy for the treatment of rheumatoid arthritis. Novartis Found Symp 291:212–220 doi:10.1002/9780470754030.ch16

    PubMed  CAS  Google Scholar 

  • Pekkari K, Goodarzi MT, Scheynius A, Holmgen A, Avila-Carino J (2005) Truncated thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell type (TAMs) via activation of the MAP kinases p38, ERK and JNK. Blood 105:1598–1605 doi:10.1182/blood-2004-04-1577

    PubMed  CAS  Google Scholar 

  • Porta C, Subhra Kumar B, Larghi P, Rubino L, Mancino A, Sica A (2007) Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 604:67–86 doi:10.1007/978-0-387-69116-9_5

    PubMed  Google Scholar 

  • Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F (2004) An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol 6:423–433 doi:10.1111/j.1462-5822.2004.00371.x

    PubMed  CAS  Google Scholar 

  • Quaye IK (2008) Haptoglobin, inflammation and disease. Trans R Soc Trop Med Hyg 102:735–742

    PubMed  CAS  Google Scholar 

  • Randow F, Seed B (2001) Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol 3:891–896 doi:10.1038/ncb1001-891

    PubMed  CAS  Google Scholar 

  • Rayner K, Chen YX, McNulty M, Simard T, Zhao X, Wells DJ, de Belleroche J, O’Brien ER (2008) Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ Res 103:133–141

    PubMed  CAS  Google Scholar 

  • Reddi K, Meghji S, Nair SP, Arnett TR, Miller AD, Preuss M, Wilson M, Henderson B, Hill P (1998) The Escherichia coli chaperonin 60 (groEL) is a potent stimulator of osteoclast formation. J Bone Miner Res 13:1260–1266 doi:10.1359/jbmr.1998.13.8.1260

    PubMed  CAS  Google Scholar 

  • Rha Y, Taube C, Haczku A et al (2002) Effect of microbial heat shock proteins on airway inflammation and hyperresponsiveness. J Immunol 169:5300–5307

    PubMed  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552 doi:10.1016/j.freeradbiomed.2005.02.026

    PubMed  CAS  Google Scholar 

  • Riffo-Vasquez Y, Spina D, Page C, Desel C, Whelan M, Tormay P, Singh M, Henderson B, Coates ARM (2004) Differential effects of Mycobacterium tuberculosis chaperonins on bronchial eosinophilia and hyperresponsiveness in a murine model of allergic inflammation. Clin Exp Allergy 34:712–719 doi:10.1111/j.1365–2222.2004.1931.x

    PubMed  CAS  Google Scholar 

  • Rodriguez NE, Chang HK, Wilson ME (2004) Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect Immun 72:2111–2122 doi:10.1128/IAI.72.4.2111-2122.2004

    PubMed  CAS  Google Scholar 

  • Rook GA, Dheda K, Zumla A (2005) Immune responses to tuberculosis in developing countries: implications for new vaccines. Nat Rev Immunol 5:661–667 doi:10.1038/nri1666

    PubMed  CAS  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–27 doi:10.1016/j.tcb.2003.11.001

    PubMed  CAS  Google Scholar 

  • Shamaei-Tousi A, D’Aiuto F, Nibali L, Steptoe A, Coates AR, Parkar M, Donos N, Henderson B (2007a) Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease. PLoS One 2:e1198 doi:10.1371/journal.pone.0001198

    PubMed  Google Scholar 

  • Shamaei-Tousi A, Steptoe A, O’Donnell K et al (2007b) Plasma heat shock protein 60 and cardiovascular disease risks: the role of psychosocial, genetic and biological factors. Cell Stress Chaperones 12:284–392 doi:10.1379/CSC-300.1

    Google Scholar 

  • Sherry B, Yarlett N, Strupp A, Cerami A (1992) Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A 89:3511–3515 doi:10.1073/pnas.89.8.3511

    PubMed  CAS  Google Scholar 

  • Sherry B, Zybarth G, Alfano M, Dubrovsky L, Mitchell R, Rich D, Ulrich P, Bucala R, Cerami A, Bukrinsky M (1998) Role of cyclophilin A in the uptake of HIV-1 by macrophages and T lymphocytes. Proc Natl Acad Sci U S A 95:1758–1763 doi:10.1073/pnas.95.4.1758

    PubMed  CAS  Google Scholar 

  • Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267:204–215

    PubMed  CAS  Google Scholar 

  • Silberstein DS, Ali MH, Baker SL, David JR (1989) Human eosinophil cytotoxicity-enhancing factor. Purification, physical characteristics, and partial amino acid sequence of an active polypeptide. J Immunol 143:979–983

    PubMed  CAS  Google Scholar 

  • Soderberg A, Sahaf B, Rosen A (2000) Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in the human plasma. Cancer Res 60:2281–2289

    PubMed  CAS  Google Scholar 

  • Splettstoesser WD, Schuff-Werner P (2002) Oxidative stress in macrophages—“the enemy within”. Micros Res Tech 57:441–445 doi:10.1002/jemt.10098

    CAS  Google Scholar 

  • Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292 doi:10.1084/jem.176.1.287

    PubMed  CAS  Google Scholar 

  • Tagayi Y, Maeda Y, Mitsui A et al (1989) ATL-derived factor (ADF), and IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement in dithiol reduction in the IL-2 receptor induction. EMBO J 8:757–764

    Google Scholar 

  • Tamaki H, Nakamura H, Nishio A et al (2006) Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology 131:1110–1121 doi:10.1053/j.gastro.2006.08.023

    PubMed  CAS  Google Scholar 

  • Thériault JR, Adachi H, Calderwood SK (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177:8604–8611

    PubMed  Google Scholar 

  • Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS (2007) CD4+CD25+Foxp3+regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 104:19446–19451 doi:10.1073/pnas.0706832104

    PubMed  CAS  Google Scholar 

  • Vabulas RM et al (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002a) Hsp70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112 doi:10.1074/jbc.M111204200

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Braedel S, Hilf N et al (2002b) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853 doi:10.1074/jbc.M200425200

    PubMed  CAS  Google Scholar 

  • Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, Weiss J, Feeney D (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368:855–863 doi:10.1016/S0140-6736(06)69210-6

    PubMed  CAS  Google Scholar 

  • Walsh A, Whelan D, Bielanowicz A, Skinner B, Aitken RJ, O’Bryan MK, Nixon B (2008) Identification of the molecular chaperone, heat shock protein 1 (chaperonin 10), in the reproductive tract and in capacitating spermatozoa in the male mouse. Biol Reprod 78:983–993 doi:10.1095/biolreprod.107.066860

    PubMed  CAS  Google Scholar 

  • Wang Y, Kelly CG, Karttunen JT et al (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983 doi:10.1016/S1074-7613(01)00242-4

    PubMed  CAS  Google Scholar 

  • Wang Y, Kelly CG, Singh M, McGowan EG, Carrara A-S, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429

    PubMed  CAS  Google Scholar 

  • Wang Y, Whittall T, McGowan E, Younson J, Kelly C, Bergmeier LA, Singh M, Lehner T (2005) Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol 174:3306–3316

    PubMed  CAS  Google Scholar 

  • Whittall T, Wang Y, Younson J, Kelly C, Bergmeier L, Peters B, Singh M, Lehner T (2006) Interaction between the CCR5 chemokine receptors and microbial HSP70. Eur J Immunol 36:2304–2314 doi:10.1002/eji.200635953

    PubMed  CAS  Google Scholar 

  • Williams JH, Ireland HE (2008) Sensing danger—Hsp72 and HMGB1 as candidate signals. J Leukoc Biol 83:489–492 doi:10.1189/jlb.0607356

    PubMed  CAS  Google Scholar 

  • Wilsher ML, Hagan C, Prestidge R, Wells AU, Murison G (1999) Human in vitro immune responses to Mycobacterium tuberculosis. Tuber Lung Dis 79:371–377 doi:10.1054/tuld.1999.0223

    PubMed  CAS  Google Scholar 

  • Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. TIBS 25:95–98 doi:10.1016/S0968-0004(99)01534-0

    PubMed  CAS  Google Scholar 

  • Winrow VR, Mesher J, Meghji S, Morris CJ, Fox S, Coates ARM, Tormay P, Blake D, Henderson B (2008) The two homologous chaperonin 60 proteins of Mycobacterium tuberculosis have distinct effects on monocyte differentiation into osteoclasts. Cell Microbiol 10:2091–2104 doi:10.1111/j.1462-5822.2008.01193.x

    PubMed  CAS  Google Scholar 

  • Xie Z, Harris-White ME, Wals PA, Frautschy SA, Finch CE, Morgan TE (2005) Apolipoprotein J (clusterin) activates rodent microglia in vitro and in vivo. J Neurochem 93:1038–1046 doi:10.1111/j.1471-4159.2005.03065.x

    PubMed  CAS  Google Scholar 

  • Yagi M, Ninomiya K, Fujita N et al (2007) Induction of DC-STAMP by alternative activation and downstream signalling mechanisms. J Bone Miner Res 22:992–1001 doi:10.1359/jbmr.070401

    PubMed  CAS  Google Scholar 

  • Yamawaki H, Berk BC (2005) Thioredoxin: a multifunctional antioxidant enzyme in kidney, heart and vessels. Curr Opin Nephrol Hypertens 14:149–153 doi:10.1097/00041552-200503000-00010

    Article  PubMed  CAS  Google Scholar 

  • Yang CS, Lee DS, Song CH et al (2007a) Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J Exp Med 204:583–594 doi:10.1084/jem.20061849

    PubMed  CAS  Google Scholar 

  • Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrançois L, Li Z (2007b) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226 doi:10.1016/j.immuni.2006.12.005

    PubMed  Google Scholar 

  • Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44:10914–10925 doi:10.1021/bi050764x

    PubMed  CAS  Google Scholar 

  • Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, Matsuda K (2001) Chaperonin turned insect toxin. Nature 411:44 doi:10.1038/35075148

    PubMed  CAS  Google Scholar 

  • Youn J, Borghesi LA, Olson EA, Lynes MA (1995) Immunomodulatory activities of extracellular metallothionein. II. Effects on macrophage functions. Toxicol Env Health 45:397–413

    Article  CAS  Google Scholar 

  • Young DB, Perkins MD, Duncan K, Barry CR (2008) Confronting the scientific obstacles to global control of tuberculosis. J Clin Invest 118:1255–1265 doi:10.1172/JCI34614

    PubMed  CAS  Google Scholar 

  • Yurchenko V, Zybarth G, O’Connor M et al (2002) Active site residues of cyclophilin A are crucial for its signalling activity via CD147. J Biol Chem 277:2259–22965 doi:10.1074/jbc.M201593200

    Google Scholar 

Download references

Acknowledgments

BH acknowledges financial support from the Wellcome Trust. SH is grateful to Professor Salvador Moncada, The Wolfson Institute for Biomedical Research, University College London, for financial support. We would like to thank the referees for providing incisive comments and to one of the referees for his suggestion that non-folding stress proteins may also play a role in modulating cell behaviour.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Henderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, B., Henderson, S. Unfolding the relationship between secreted molecular chaperones and macrophage activation states. Cell Stress and Chaperones 14, 329–341 (2009). https://doi.org/10.1007/s12192-008-0087-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0087-4

Keywords

Navigation