Increased serum heat-shock protein 70 levels reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia

  • Attila Molvarec
  • János RigóJr
  • Levente Lázár
  • Krisztián Balogh
  • Veronika Makó
  • László Cervenak
  • Miklós Mézes
  • Zoltán Prohászka
Original Paper


It has been previously reported that serum levels of 70-kDa heat-shock protein (Hsp70) are elevated in preeclampsia. The aim of the present study was to examine whether increased serum Hsp70 levels are related to clinical characteristics and standard laboratory parameters of preeclamptic patients, as well as to markers of inflammation (C-reactive protein), endothelial activation (von Willebrand factor antigen) or endothelial injury (fibronectin), trophoblast debris (cell-free fetal DNA) and oxidative stress (malondialdehyde). Sixty-seven preeclamptic patients and 70 normotensive, healthy pregnant women were involved in this case-control study. Serum Hsp70 levels were measured with enzyme-linked immunosorbent assay (ELISA). Standard laboratory parameters (clinical chemistry) and C-reactive protein (CRP) levels were determined by an autoanalyzer using the manufacturer’s kits. Plasma von Willebrand factor antigen (VWF:Ag) levels were quantified by ELISA, and plasma fibronectin concentration by nephelometry. The amount of cell-free fetal DNA in maternal plasma was determined by quantitative real-time polymerase chain reaction analysis of the sex-determining region Y gene. Plasma malondialdehyde levels were measured by the thiobarbituric acid-based colorimetric assay. Serum Hsp70 levels were increased in preeclampsia. Furthermore, serum levels of blood urea nitrogen, creatinine, bilirubin and CRP, serum alanine aminotransferase and lactate dehydrogenase (LDH) activities, as well as plasma levels of VWF:Ag, fibronectin, cell-free fetal DNA and malondialdehyde were also significantly higher in preeclamptic patients than in normotensive, healthy pregnant women. In preeclamptic patients, serum Hsp70 levels showed significant correlations with serum CRP levels (Spearman R = 0.32, p = 0.010), serum aspartate aminotransferase (R = 0.32, p = 0.008) and LDH activities (R = 0.50, p < 0.001), as well as with plasma malondialdehyde levels (R = 0.25, p = 0.043). However, there was no other relationship between serum Hsp70 levels and clinical characteristics (age, parity, body mass index, blood pressure, gestational age, fetal birth weight) and laboratory parameters of preeclamptic patients, including markers of endothelial activation or injury and trophoblast debris. In conclusion, increased serum Hsp70 levels seem to reflect systemic inflammation, oxidative stress and hepatocellular injury in preeclampsia. Nevertheless, further studies are required to determine whether circulating Hsp70 plays a causative role in the pathogenesis of the disease.


Biomarker Heat-shock protein 70 Hepatocellular injury Inflammation Oxidative stress Preeclampsia 



alanine aminotransferase


analysis of covariance


aspartate aminotransferase


body mass index


blood urea nitrogen


cluster of differentiation


C-reactive protein


deoxyribonucleic acid


ethylenediaminetetraacetic acid


enzyme-linked immunosorbent assay


hemolysis, elevated liver enzymes, and low platelet count




heat-shock protein




lactate dehydrogenase


lectin-like oxidised low-density lipoprotein receptor-1






phosphate-buffered saline


polymerase chain reaction


ribonucleic acid


sex-determining region Y


T helper 1


tumor necrosis factor-α




von Willebrand factor antigen


  1. Abe M, Manola JB, Oh WK, Parslow DL, George DJ, Austin CL, Kantoff PW (2004) Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer 3:49–53PubMedGoogle Scholar
  2. Adewoye AH, Klings ES, Farber HW et al (2005) Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70. Am J Hematol 78:240–242 doi:10.1002/ajh.20292 PubMedCrossRefGoogle Scholar
  3. Asea A (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc Immunol Rev 11:34–45PubMedGoogle Scholar
  4. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442 doi:10.1038/74697 PubMedCrossRefGoogle Scholar
  5. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034 doi:10.1074/jbc.M200497200 PubMedCrossRefGoogle Scholar
  6. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546 doi:10.1093/intimm/12.11.1539 PubMedCrossRefGoogle Scholar
  7. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313 doi:10.1016/S1074-7613(01)00111-X PubMedCrossRefGoogle Scholar
  8. Bausero MA, Gastpar R, Multhoff G, Asea A (2005) Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J Immunol 175:2900–2912PubMedGoogle Scholar
  9. Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606 doi:10.1074/jbc.M302326200 PubMedCrossRefGoogle Scholar
  10. Duckitt K, Harrington D (2005) Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330:565 doi:10.1136/bmj.38380.674340.E0 PubMedCrossRefGoogle Scholar
  11. Dybdahl B, Wahba A, Lien E et al (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105:685–690 doi:10.1161/hc0602.103617 PubMedCrossRefGoogle Scholar
  12. Dybdahl B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91:299–304 doi:10.1136/hrt.2003.028092 PubMedCrossRefGoogle Scholar
  13. Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962 doi:10.1113/jphysiol.2002.025148 PubMedCrossRefGoogle Scholar
  14. Fehrenbach E, Niess AM, Voelker K, Northoff H, Mooren FC (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26:552–557 doi:10.1055/s-2004-830334 PubMedCrossRefGoogle Scholar
  15. Fischer CP, Hiscock NJ, Basu S, Vessby B, Kallner A, Sjoberg LB, Febbraio MA, Pedersen BK (2006) Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol 100:1679–1687 doi:10.1152/japplphysiol.00421.2005 PubMedCrossRefGoogle Scholar
  16. Fukushima A, Kawahara H, Isurugi C, Syoji T, Oyama R, Sugiyama T, Horiuchi S (2005) Changes in serum levels of heat shock protein 70 in preterm delivery and pre-eclampsia. J Obstet Gynaecol Res 31:72–77 doi:10.1111/j.1447-0756.2005.00244.x PubMedCrossRefGoogle Scholar
  17. Genth-Zotz S, Bolger AP, Kalra PR, von Haehling S, Doehner W, Coats AJ, Volk HD, Anker SD (2004) Heat shock protein 70 in patients with chronic heart failure: relation to disease severity and survival. Int J Cardiol 96:397–401 doi:10.1016/j.ijcard.2003.08.008 PubMedCrossRefGoogle Scholar
  18. Gombos T, Forhecz Z, Pozsonyi Z, Janoskuti L, Prohaszka Z (2008) Interaction of serum 70-kDa heat shock protein levels and HspA1B (+1267) gene polymorphism with disease severity in patients with chronic heart failure. Cell Stress Chaperones 13:199–206 doi:10.1007/s12192-007-0001-5 PubMedCrossRefGoogle Scholar
  19. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197 doi:10.1016/0092-8674(91)90611-2 PubMedCrossRefGoogle Scholar
  20. House SD, Guidon PT Jr., Perdrizet GA et al (2001) Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones 6:164–171 doi:10.1379/1466-1268(2001)006<0164:EOHSSC>2.0.CO;2 PubMedCrossRefGoogle Scholar
  21. Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004a) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517 doi:10.1016/j.bbrc.2004.09.075 PubMedCrossRefGoogle Scholar
  22. Hunter-Lavin C, Hudson PR, Mukherjee S, Davies GK, Williams CP, Harvey JN, Child DF, Williams JH (2004b) Folate supplementation reduces serum hsp70 levels in patients with type 2 diabetes. Cell Stress Chaperones 9:344–349 doi:10.1379/CSC-28R.1 PubMedCrossRefGoogle Scholar
  23. Jirecek S, Hohlagschwandtner M, Tempfer C, Knofler M, Husslein P, Zeisler H (2002) Serum levels of heat shock protein 70 in patients with preeclampsia: a pilot-study. Wien Klin Wochenschr 114:730–732PubMedGoogle Scholar
  24. Joubert K (2000) Standards of the body mass and body length of birth in Hungary on the basis of the 1990–1996 nation-wide liveborn data. Magy Noorv L 63:155–163Google Scholar
  25. Kimura F, Itoh H, Ambiru S et al (2004) Circulating heat-shock protein 70 is associated with postoperative infection and organ dysfunction after liver resection. Am J Surg 187:777–784 doi:10.1016/j.amjsurg.2003.08.029 PubMedCrossRefGoogle Scholar
  26. Kingston AE, Hicks CA, Colston MJ, Billingham ME (1996) A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol 103:77–82 doi:10.1046/j.1365-2249.1996.929628.x PubMedCrossRefGoogle Scholar
  27. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355 doi:10.1074/jbc.M502017200 PubMedCrossRefGoogle Scholar
  28. Lazar L, Nagy B, Ban Z, Nagy GR, Papp Z (2006) Presence of cell-free fetal DNA in plasma of women with ectopic pregnancies. Clin Chem 52:1599–1601 doi:10.1373/clinchem.2006.067587 PubMedCrossRefGoogle Scholar
  29. Liu Y, Li N, You L, Liu X, Li H, Wang X (2008) HSP70 is Associated with Endothelial Activation in Placental Vascular Diseases. Mol Med (in press) doi:10.2119/2008.00009.Liu
  30. Madach K, Molvarec A, Rigo J Jr, Nagy B, Penzes I, Karadi I, Prohaszka Z (2008) Elevated serum 70 kDa heat shock protein level reflects tissue damage and disease severity in the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Eur J Obstet Gynecol Reprod Biol (in press) doi:10.1016/j.ejogrb.2007.12.012
  31. Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177:7849–7857PubMedGoogle Scholar
  32. Molvarec A, Prohaszka Z, Nagy B, Szalay J, Fust G, Karadi I, Rigo J Jr (2006) Association of elevated serum heat-shock protein 70 concentration with transient hypertension of pregnancy, preeclampsia and superimposed preeclampsia: a case-control study. J Hum Hypertens 20:780–786 doi:10.1038/sj.jhh.1002060 PubMedCrossRefGoogle Scholar
  33. Molvarec A, Prohaszka Z, Nagy B, Kalabay L, Szalay J, Fust G, Karadi I, Rigo J Jr (2007a) Association of increased serum heat shock protein 70 and C-reactive protein concentrations and decreased serum alpha(2)-HS glycoprotein concentration with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. J Reprod Immunol 73:172–179 doi:10.1016/j.jri.2006.07.002 PubMedCrossRefGoogle Scholar
  34. Molvarec A, Rigo J Jr., Nagy B, Walentin S, Szalay J, Fust G, Karadi I, Prohaszka Z (2007b) Serum heat shock protein 70 levels are decreased in normal human pregnancy. J Reprod Immunol 74:163–169 doi:10.1016/j.jri.2006.12.002 PubMedCrossRefGoogle Scholar
  35. Njemini R, Lambert M, Demanet C, Mets T (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol 58:664–669 doi:10.1111/j.1365-3083.2003.01341.x PubMedCrossRefGoogle Scholar
  36. Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52:611–617 discussion 617 doi:10.1097/00005373-200204000-00001 PubMedCrossRefGoogle Scholar
  37. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16:359–364 doi:10.1016/0003-2697(66)90167-9 PubMedCrossRefGoogle Scholar
  38. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476 doi:10.1016/S0140-6736(03)14075-5 PubMedCrossRefGoogle Scholar
  39. Pockley AG, Shepherd J, Corton JM (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27:367–377 doi:10.3109/08820139809022710 PubMedCrossRefGoogle Scholar
  40. Prohaszka Z, Fust G (2004) Immunological aspects of heat-shock proteins – the optimum stress of life. Mol Immunol 41:29–44 doi:10.1016/j.molimm.2004.02.001 PubMedCrossRefGoogle Scholar
  41. Prohaszka Z, Singh M, Nagy K, Kiss E, Lakos G, Duba J, Fust G (2002) Heat shock protein 70 is a potent activator of the human complement system. Cell Stress Chaperones 7:17–22 doi:10.1379/1466-1268(2002)007<0017:HSPIAP>2.0.CO;2 PubMedCrossRefGoogle Scholar
  42. Redman CW, Sargent IL (2001) The pathogenesis of pre-eclampsia. Gynecol Obstet Fertil 29:518–522 doi:10.1016/S1297-9589(01)00180-1 PubMedCrossRefGoogle Scholar
  43. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594 doi:10.1126/science.1111726 PubMedCrossRefGoogle Scholar
  44. Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180:499–506 doi:10.1016/S0002-9378(99)70239-5 PubMedCrossRefGoogle Scholar
  45. Roberts JM, Gammill HS (2005) Preeclampsia: recent insights. Hypertension 46:1243–1249 doi:10.1161/01.HYP.0000188408.49896.c5 PubMedCrossRefGoogle Scholar
  46. Suzuki K, Peake J, Nosaka K et al (2006) Changes in markers of muscle damage, inflammation and HSP70 after an Ironman Triathlon race. Eur J Appl Physiol 98:525–534 doi:10.1007/s00421-006-0296-4 PubMedCrossRefGoogle Scholar
  47. Tanaka S, Kimura Y, Mitani A et al (1999) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565PubMedGoogle Scholar
  48. Theriault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960 doi:10.1016/j.febslet.2005.02.046 PubMedCrossRefGoogle Scholar
  49. Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393 doi:10.1379/1466-1268(2001)006<0386:EISHIH>2.0.CO;2 PubMedCrossRefGoogle Scholar
  50. Wendling U, Paul L, van der Zee R, Prakken B, Singh M, van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717PubMedGoogle Scholar
  51. Wheeler DS, Fisher LE Jr., Catravas JD, Jacobs BR, Carcillo JA, Wong HR (2005) Extracellular hsp70 levels in children with septic shock. Pediatr Crit Care Med 6:308–311 doi:10.1097/01.PCC.0000161075.97355.2E PubMedCrossRefGoogle Scholar
  52. Wright BH, Corton JM, El-Nahas AM, Wood RF, Pockley AG (2000) Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart Vessels 15:18–22 doi:10.1007/s003800070043 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2008

Authors and Affiliations

  • Attila Molvarec
    • 1
  • János RigóJr
    • 2
  • Levente Lázár
    • 2
  • Krisztián Balogh
    • 3
  • Veronika Makó
    • 4
  • László Cervenak
    • 5
  • Miklós Mézes
    • 6
  • Zoltán Prohászka
    • 4
    • 5
  1. 1.1st Department of Obstetrics and GynecologySemmelweis UniversityBudapestHungary
  2. 2.1st Department of Obstetrics and GynecologySemmelweis UniversityBudapestHungary
  3. 3.Research Group of Animal Breeding and Hygiene, Faculty of Animal ScienceUniversity of KaposvárKaposvárHungary
  4. 4.3rd Department of Internal Medicine and Szentágothai Knowledge CenterSemmelweis UniversityBudapestHungary
  5. 5.Research Group of Inflammation Biology and ImmunogenomicsHungarian Academy of SciencesBudapestHungary
  6. 6.Department of Nutrition, Faculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary

Personalised recommendations