Skip to main content
Log in

Myocardial Hsp70 phosphorylation and PKC-mediated cardioprotection following exercise

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Both protein kinase C (PKC) activation and Hsp70 expression have been shown to be key components for exercise-mediated myocardial protection during ischemia–reperfusion injury. Given that Hsp70 has been shown to undergo inducible phosphorylation in striated muscle and liver, we hypothesized that PKC may regulate myocardial Hsp70 function and subsequent exercise-conferred cardioprotection through this phosphorylation. Hence, acute exercise of male Sprague–Dawley rats (30 m/min for 60 min at 2% grade) was employed to assess the role of PKC and its selected isoforms in phosphorylation of Hsp70 and protection of the myocardium during ischemia–reperfusion injury. It was observed that administration of the PKC inhibitor chelerythrine chloride (5 mg/kg) suppressed the activation of three exercise-induced PKC isoforms (PKCα, PKCδ, and PKCɛ) and attenuated the exercise-mediated reduction of myocardial infarct size during ischemia–reperfusion injury. While this study also demonstrated that exercise led to an alteration in the phosphorylation status of Hsp70, this posttranslational modification appeared to be dissociated from PKC activation, as exercise-induced phosphorylation of Hsp70 was unchanged following inhibition of PKC. Taken together, these results indicate that selected isoforms of PKC play an important role in exercise-mediated protection of the myocardium during ischemia–reperfusion injury. However, exercise-induced phosphorylation of Hsp70 does not appear to be a mechanism by which PKC induces this cardioprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33:1897–1918 doi:10.1006/jmcc.2001.1462

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Jew KN, Sparagna GC, Musch TI, Moore RL (2003) Exercise training preserves coronary flow and reduces infarct size after ischemia–reperfusion in rat heart. J Appl Physiol 95:2510–2518

    PubMed  Google Scholar 

  • Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, Moore RL (2005a) Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol 569:913–924 doi:10.1113/jphysiol.2005.095729

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, Moore RL (2005b) Susceptibility of the heart to ischaemia–reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol 564:619–630 doi:10.1113/jphysiol.2004.081323

    Article  PubMed  CAS  Google Scholar 

  • Carroll R, Yellon DM (1999) Myocardial adaptation to ischaemia—the preconditioning phenomenon. Int J Cardiol 68(Suppl 1):S93–101 doi:10.1016/S0167-5273(98)00297-6

    Article  PubMed  Google Scholar 

  • Carson LD, Korzick DH (2003) Dose-dependent effects of acute exercise on PKC levels in rat heart: is PKC the heart’s prophylactic? Acta Physiol Scand 178:97–106 doi:10.1046/j.1365-201X.2003.01131.x

    Article  PubMed  CAS  Google Scholar 

  • Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, de Carvalho AC, de Carvalho DP, Oliveira MF, Nascimento JH (2006) Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol 99:223–230 doi:10.1016/j.jsbmb.2006.01.004

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A 94:8121–8126 doi:10.1073/pnas.94.15.8121

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez B, Manso R (2004) Induction, modification and accumulation of HSP70s in the rat liver after acute exercise: early and late responses. J Physiol 556:369–385 doi:10.1113/jphysiol.2003.058420

    Article  PubMed  CAS  Google Scholar 

  • Hahn HS, Marreez Y, Odley A, Sterbling A, Yussman MG, Hilty KC, Bodi I, Liggett SB, Schwartz A, Dorn GW (2003) Protein kinase Calpha negatively regulates systolic and diastolic function in pathological hypertrophy. Circ Res 93:1111–1119 doi:10.1161/01.RES.0000105087.79373.17

    Article  PubMed  CAS  Google Scholar 

  • Hernando R, Manso R (1997) Muscle fibre stress in response to exercise: synthesis, accumulation and isoform transitions of 70-kDa heat-shock proteins. Eur J Biochem 243:460–467 doi:10.1111/j.1432-1033.1997.0460a.x

    Article  PubMed  CAS  Google Scholar 

  • Hoffman A, Goldstein S, Samuni A, Borman JB, Schwalb H (2003) Effect of nitric oxide and nitroxide SOD-mimic on the recovery of isolated rat heart following ischemia and reperfusion. Biochem Pharmacol 66:1279–1286 doi:10.1016/S0006-2952(03)00441-6

    Article  PubMed  CAS  Google Scholar 

  • Holmuhamedov EL, Wang L, Terzic A (1999) ATP-sensitive K+channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol 519(Pt 2):347–360 doi:10.1111/j.1469-7793.1999.0347m.x

    Article  PubMed  CAS  Google Scholar 

  • Jew KN, Moore RL (2002) Exercise training alters an anoxia-induced, glibenclamide-sensitive current in rat ventricular cardiocytes. J Appl Physiol 92:1473–1479 doi:10.1063/1.1485110

    Article  PubMed  Google Scholar 

  • Joyeux M, Baxter GF, Thomas DL, Ribuot C, Yellon DM (1997) Protein kinase C is involved in resistance to myocardial infarction induced by heat stress. J Mol Cell Cardiol 29:3311–3319 doi:10.1006/jmcc.1997.0556

    Article  PubMed  CAS  Google Scholar 

  • Kawabata KI, Netticadan T, Osada M, Tamura K, Dhalla NS (2000) Mechanisms of ischemic preconditioning effects on Ca(2+) paradox- induced changes in heart. Am J Physiol 278:H1008–H1015

    PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol 280:H649–H657

    PubMed  CAS  Google Scholar 

  • Lakshmikuttyamma A, Selvakumar P, Anderson DH, Datla RS, Sharma RK (2004) Molecular cloning of bovine cardiac muscle heat-shock protein 70 kDa and its phosphorylation by cAMP-dependent protein kinase in vitro. Biochemistry 43:13340–13347 doi:10.1021/bi049036k

    Article  PubMed  CAS  Google Scholar 

  • Locke M, Tanguay RM, Klabunde RE, Ianuzzo CD (1995) Enhanced postischemic myocardial recovery following exercise induction of HSP 72. Am J Physiol 269:H320–H325

    PubMed  CAS  Google Scholar 

  • Loktionova SA, Kabakov AE (1998) Protein phosphatase inhibitors and heat preconditioning prevent Hsp27 dephosphorylation, F-actin disruption and deterioration of morphology in ATP-depleted endothelial cells. FEBS Lett 433:294–300 doi:10.1016/S0014-5793(98)00920-X

    Article  PubMed  CAS  Google Scholar 

  • Loubani M, Hassouna A, Galinanes M (2004) Delayed preconditioning of the human myocardium: signal transduction and clinical implications. Cardiovasc Res 61:600–609 doi:10.1016/j.cardiores.2003.10.013

    Article  PubMed  CAS  Google Scholar 

  • Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456 doi:10.1172/JCI117815

    Article  PubMed  CAS  Google Scholar 

  • Meldrum DR, Cleveland JC Jr, Sheridan BC, Rowland RT, Banerjee A, Harken AH (1996) Cardiac surgical implications of calcium dyshomeostasis in the heart. Ann Thorac Surg 61:1273–1280 doi:10.1016/0003-4975(95)00952-3

    Article  PubMed  CAS  Google Scholar 

  • Melling CW, Thorp DB, Noble EG (2004) Regulation of myocardial heat shock protein 70 gene expression following exercise. J Mol Cell Cardiol 37:847–855 doi:10.1016/j.yjmcc.2004.05.021

    Article  PubMed  CAS  Google Scholar 

  • Nadruz W Jr, Kobarg CB, Kobarg J, Franchini KG (2004) c-Jun is regulated by combination of enhanced expression and phosphorylation in acute-overloaded rat heart. Am J Physiol 286:H760–H767 doi:10.1152/ajpheart.00430.2003

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Hangaishi M, Ishizaka N, Taguchi J, Igarashi R, Mizushima Y, Nagai R, Ohno M (2001) Lecithinized copper, zinc-superoxide dismutase ameliorates ischemia-induced myocardial damage. Life Sci 69:935–944 doi:10.1016/S0024-3205(01)01188-2

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498 doi:10.1074/jbc.270.43.25526

    Article  PubMed  CAS  Google Scholar 

  • Ockaili R, Emani VR, Okubo S, Brown M, Krottapalli K, Kukreja RC (1999) Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: role of nitric oxide. Am J Physiol 277:H2425–H2434

    PubMed  CAS  Google Scholar 

  • Ozcan C, Bienengraeber M, Dzeja PP, Terzic A (2002) Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol 282:H531–H539

    PubMed  CAS  Google Scholar 

  • Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001) Ischemic preconditioning: from the first to the second window of protection. Life Sci 69:1–15 doi:10.1016/S0024-3205(01)01113-4

    Article  PubMed  CAS  Google Scholar 

  • Paroo Z, Haist JV, Karmazyn M, Noble EG (2002) Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ Res 90:911–917 doi:10.1161/01.RES.0000016963.43856.B1

    Article  PubMed  CAS  Google Scholar 

  • Ping P, Zhang J, Cao X, Li RC, Kong D, Tang XL, Qiu Y, Manchikalapudi S, Auchampach JA, Black RG, Bolli R (1999) PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol 276:H1468–H1481

    PubMed  CAS  Google Scholar 

  • Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R (1997) Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 81:404–414

    PubMed  CAS  Google Scholar 

  • Theodorakis NG, Morimoto RI (1987) Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 7:4357–4368

    PubMed  CAS  Google Scholar 

  • Venema RC, Kuo JF (1993) Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J Biol Chem 268:2705–2711

    PubMed  CAS  Google Scholar 

  • Wang Y, Ashraf M (1999) Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium. Circ Res 84:1156–1165

    PubMed  CAS  Google Scholar 

  • Wang Y, Hirai K, Ashraf M (1999) Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity. Circ Res 85:731–741

    PubMed  CAS  Google Scholar 

  • Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M (1999) Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 189:1699–1706 doi:10.1084/jem.189.11.1699

    Article  PubMed  CAS  Google Scholar 

  • Yamashita N, Baxter GF, Yellon DM (2001) Exercise directly enhances myocardial tolerance to ischaemia–reperfusion injury in the rat through a protein kinase C mediated mechanism. Heart 85:331–336 doi:10.1136/heart.85.3.331

    Article  PubMed  CAS  Google Scholar 

  • Zucchi R, Ronca-Testoni S, Yu G, Galbani P, Ronca G, Mariani M (1995) Postischemic changes in cardiac sarcoplasmic reticulum Ca2+ channels. A possible mechanism of ischemic preconditioning. Circ Res 76:1049–1056

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 8170-05 RGPIN from the National Science and Engineering Research Council of Canada to E.G. Noble and by Ontario Graduate Scholarships for Science and Technology to C.W.J. Melling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl G. Noble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melling, C.W.J., Thorp, D.B., Milne, K.J. et al. Myocardial Hsp70 phosphorylation and PKC-mediated cardioprotection following exercise. Cell Stress and Chaperones 14, 141–150 (2009). https://doi.org/10.1007/s12192-008-0065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0065-x

Keywords

Navigation