Skip to main content
Log in

MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50°C) and high (70°C) growth temperatures than under the optimal growth temperature for the organism (65°C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4°C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0°C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amegbey GY, Monzavi H, Habibi-Nazhad B, Bhattacharyya S, Wishart DS (2003) Structural and functional characterization of a thioredoxin-like protein (Mt0807) from Methanothermobacter thermolithotrophicus. Biochemistry 42:8001–8010

    Article  PubMed  CAS  Google Scholar 

  • Brickman E, Beckwith J (1975) Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and j80 transducing phages. J Mol Biol 96:307–316

    Article  PubMed  CAS  Google Scholar 

  • Bult CJ, White O, Olsen GJ et al (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Song JL, Zhang S, Wang Y, Cui DF, Wang CC (1999) Chaperone activity of DsbC. J Biol Chem 274:19601–19605

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Villeneuve TS, Garant KA, Amons R, MacRae TH (2007) Functional characterization of artemin, a ferritin homolog synthesized in artemia embryos during encystment and diapause. FEBS Journal 274:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1986) Detection of folding intermediates using urea-gradient electrophoresis. Methods Enzymol 131:156–172

    PubMed  CAS  Google Scholar 

  • Darby NJ, Creighton TE (1995) Functional properties of the individual thioredoxin-like domains of protein disulfide isomerase. Biochemistry 34:11725–11735

    Article  PubMed  CAS  Google Scholar 

  • Eckburg PB, Lepp PW, Relman DA (2003) Archaea and their potential role in human disease. Infect Immun 71(2):591–596

    Article  PubMed  CAS  Google Scholar 

  • Eichler J, Adams MWW (2005) Posttranslational protein modification in Archaea. Microbiol Mol Biol Rev 69:393–425

    Article  PubMed  CAS  Google Scholar 

  • Ferrari DM, Söling HD (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339:1–10

    Article  PubMed  CAS  Google Scholar 

  • Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HF (1997) Protein disulfide isomerase and assisted protein folding. J Biol Chem 272(47):29399–29402

    Article  PubMed  CAS  Google Scholar 

  • Gorst CM, Zhou ZH, Ma K, Teng Q, Howard JB, Adams MW, La Mar GN (1995) Participation of the disulfide bridge in the redox cycle of the ferredoxin from the hyperthermophile Pyrococcus furiosus: 1H nuclear magnetic resonance time resolution of the four redox states at ambient temperature. Biochemistry 34:8788–8795

    Article  PubMed  CAS  Google Scholar 

  • Guagliardi A, Nobile V, Bartolucci S, Rossi M (1994) A thioredoxin from the extreme thermophilic archaeon Sulfolobus solfataricus. Int J Biochem 26:375–380

    Article  CAS  Google Scholar 

  • Hawkins HC, Blackburn EC, Freedman RB (1991) Comparison of the activities of protein disulphide-isomerase and thioredoxin in catalysing disulphide isomerization in a protein substrate. Biochem J 275:349–353

    PubMed  CAS  Google Scholar 

  • Holmgren A (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254:9627–9632

    PubMed  CAS  Google Scholar 

  • Holst B, Tachibana C, Winther JR (1997) Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum. J Cell Biol 138(6):1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B (1999) Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci 96:3600–3605

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DP, Weir N, Mountain A, Lund PA (1995) Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli. J Biol Chem 270:28210–28215

    Article  PubMed  CAS  Google Scholar 

  • Huppa JB, Ploegh HL (1998) The eS-Sence of -SH in the ER. Cell 92:145–148

    Article  PubMed  CAS  Google Scholar 

  • Jonda S, Huber-Wunderlich M, Glockshuber R, Mössner E (1999) Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. EMBO J 18(12):3271–3281

    Article  PubMed  CAS  Google Scholar 

  • Kashima Y, Ishikawa K (2003) A hyperthermostable novel protein-disulfide oxidoreductase is reduced by thioredoxin reductase from hyperthermophilic archaeon Pyrococcus horikoshii. Arch Biochem Biophys 418:79–85

    Article  CAS  Google Scholar 

  • Katzen F, Beckwith J (2000) Transmembrane Electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103:769–779

    Article  PubMed  CAS  Google Scholar 

  • Kern R, Malki A, Holmgren A, Richarme G (2003) Chaperone properties of E. coli thioredoxin and thioredoxin reductase. Biochemical J 371:965–972

    Article  CAS  Google Scholar 

  • Kersteen EA, Raines RT (2003) Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics. Antioxid Redox Signal 5:413–424

    Article  PubMed  CAS  Google Scholar 

  • Kim EE, Wyckoff HW (1991) Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J Mol Biol 218:449–464

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Sandler SJ, Goldman S, Yokota H, Clark AJ, Kim SH (1998) Overexpression of archaeal proteins in Escherichia coli. Biotechnol Lett 20(3):207–210

    Article  CAS  Google Scholar 

  • Klappa P, Ruddock LW, Darby NJ, Freedman RB (1998) The b’ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J 17:927–935

    Article  PubMed  CAS  Google Scholar 

  • Klumpp M, Baumeister W (1998) The thermosome: archetype of group II chaperonins. FEBS Lett 430:73–77

    Article  PubMed  CAS  Google Scholar 

  • Knodlera LA, Noiva R, Mehta K et al (1999) Novel protein-disulfide isomerases from the early-diverging protist Giardia lamblia. J Biol Chem 274:29805–29811

    Article  Google Scholar 

  • Lyles MM, Gilbert HF (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry 30:613–619

    Article  PubMed  CAS  Google Scholar 

  • Lyles MM, Gilbert HF (1994) Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains. J Biol Chem 269:30946–30952

    PubMed  CAS  Google Scholar 

  • Macario AJ, Dugan CB, Conway de Macario E (1991) A dnaK homolog in the archaebacterium Methanosarcina mazei S6. Gene 108(1):133–137

    Article  PubMed  CAS  Google Scholar 

  • Macario AJL, Lange M, Ahring BK, Conway de Macario E (1999) Stress genes and proteins in the Archaea. Microbiol Mol Biol Rev 63:923–967

    PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Prokaryotic diversity: the Archaea. In: Brock biology of microorganisms. Prentice-Hall, Inc., Upper Saddle River, NJ, pp 546–572

    Google Scholar 

  • Mallick P, Boutz DR, Eisenberg D, Yeates TO (2002) Genomic evidence that the intercellular proteins of archaeal microbes contain disulfide bonds. Proc Natl Acad Sci 99:9679–9684

    Article  PubMed  CAS  Google Scholar 

  • McArthur AG, Knodler LA, Silberman JD, Davids BJ, Gillin FD, Sogin ML (2001) The evolutionary origins of eukaryotic protein disulfide isomerase domains: new evidence from the amitochondriate protist Giardia lamblia. Mol Biol Evol 18(8):1455–1463

    PubMed  CAS  Google Scholar 

  • McCarthy AA, Haebel PW, Torronen A, Rybin V, Baker EN, Metcalf P (2000) Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7(3):196–199

    Article  PubMed  CAS  Google Scholar 

  • McFarlan SC, Terrell CA, Hogenkamp HP (1992) The purification, characterization, and primary structure of a small redox protein from Methanobacterium thermoautotrophicum, an archaebacterium. J Biol Chem 267:10561–10569

    PubMed  CAS  Google Scholar 

  • Missiakas D, Raina S (1997) Protein folding in the bacterial periplasm. J Bacteriol 179(8):2465–2471

    PubMed  CAS  Google Scholar 

  • Ng SYM, Jarrell KF (2003) Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J Bacteriol 185(20):5936–5942

    Article  PubMed  CAS  Google Scholar 

  • Ostermeier M, De Sutter K, Georgiou G (1996) Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J Biol Chem 271(18):10616–10622

    Article  PubMed  CAS  Google Scholar 

  • Pandhare J, Deshpande V (2004) Both chaperone and isomerase functions of protein disulfide isomerase are essential for acceleration of the oxidative refolding and reactivation of dimeric alkaline protease inhibitor. Protein Sci 13:2493–2501

    Article  PubMed  CAS  Google Scholar 

  • Pedone E, Ren B, Ladenstein R, Rossi M, Bartolucci S (2004) Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus A member of a novel protein family related to protein disulfide-isomerase. Eur J Biochem 271:3437–3448

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AC, Park HW, Mao C, Beese LS (2000) Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 299:447–462

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Langford PR, Kroll JS (2004) Functional diversity of three different DsbA proteins from Neisseria meningitides. Microbiology 150:2993–3000

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum Delta H: functional analysis and comparative genomics. J Bacteriol 179(22):7135–7155

    PubMed  CAS  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Method Enzymol 185:60–89

    Article  CAS  Google Scholar 

  • Tang B, Zhang SZ, Yang KY (1994) Assisted refolding of recombinant prochymosin with the aid of protein disulfide isomerase. Biochem J 301:17–20

    PubMed  CAS  Google Scholar 

  • van den Berg B, Chung EW, Robinson CV, Mateo PL, Dobson CM (1999) The oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase. EMBO J 18:4794–4803

    Article  PubMed  Google Scholar 

  • Vinci M, Ruoppolo M, Pucci P, Freedman RB, Marino G (2000) Early intermediates in the PDI-assisted folding of ribonuclease A. Protein Sci 9:525–535

    Article  PubMed  CAS  Google Scholar 

  • Wang CC (1998) Isomerase and chaperone activities of protein disulfide isomerase are both required for its function as a foldase. Biochemistry (Moscow) 63:407–412

    CAS  Google Scholar 

  • Zhao Z, Peng Y, Hao SF, Zeng ZH, Wang CC (2003) Dimerization by domain hybridization bestows chaperone and isomerase activities. J Biol Chem 278:43292–43298

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Chih-chen Wang and Lei Wang for providing help on assay of disulfide isomerase activity and Khalid Mahmood and Chris Wood for his revising the manuscript. This work was supported by the COMRA Project (DY 105-02-10), the Project (z02923) and National Science Fund of China (30570053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Min or Wei-Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, X., Lv, ZM., Zhao, Y. et al. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response. Cell Stress and Chaperones 13, 239–246 (2008). https://doi.org/10.1007/s12192-008-0026-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0026-4

Keywords

Navigation