Skip to main content
Log in

Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Larvae of the brine shrimp Artemia franciscana serve as important feed in fish and shellfish larviculture; however, they are subject to bacterial diseases that devastate entire populations and consequently hinder their use in aquaculture. Exposure to abiotic stress was shown previously to shield Artemia larvae against infection by pathogenic Vibrio, with the results suggesting a mechanistic role for heat shock protein 70. In the current report, combined hypothermic/hyperthermic shock followed by recovery at ambient temperature induced Hsp70 synthesis in Artemia larvae. Thermotolerance was also increased as was protection against infection by Vibrio campbellii, the latter indicated by reduced mortality and lower bacterial load in challenge tests. Resistance to Vibrio improved in the face of declining body mass as demonstrated by measurement of ash-free dry weight. Hypothermic stress only and acute osmotic insult did not promote Hsp70 expression and thermotolerance in Artemia larvae nor was resistance to Vibrio challenge augmented. The data support a causal link between Hsp70 accumulation induced by abiotic stress and enhanced resistance to infection by V. campbellii, perhaps via stimulation of the Artemia immune system. This possibility is now under investigation, and the work may reveal fundamental properties of crustacean immunity. Additionally, the findings are important in aquaculture where development of procedures to prevent bacterial infection of feed stock such as Artemia larvae is a priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avendaño-Herrera R, Magariños B, Irgang R, Toranzo AE (2006) Use of hydrogen peroxide against the fish pathogen Tenacibaculum maritimum and its effect on infected turbot (Scophthalmus maximus). Aquaculture 257:104–110

    Article  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    Article  PubMed  CAS  Google Scholar 

  • Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183

    Article  PubMed  CAS  Google Scholar 

  • Browne RA, Wanigasekera G (2000) Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. J Exp Mar Biol Ecol 244:29–44

    Article  Google Scholar 

  • Campisi J, Fleshner M (2003) The role of extracellular Hsp72 in acute stress-induced potentiation of innate immunity in physically active rats. J Appl Physiol 94:43–52

    PubMed  CAS  Google Scholar 

  • Clegg JS, Jackson SA, Hoa NV, Sorgeloos P (2000a) Thermal resistance, developmental rate and heat shock proteins in Artemia franciscana, from San Francisco Bay and Southern Vietnam. J Exp Mar Biol Ecol 252:85–96

    Article  PubMed  Google Scholar 

  • Clegg JS, Jackson SA, Popov VI (2000b) Long-term anoxia in encysted embryos of the crustacean, Artemia franciscana: viability, ultrastructure and stress proteins. Cell Tissue Res 301:433–446

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS, Trotman CNA (2002) Physiological and biochemical aspects of Artemia ecology. In: Abatzopoulos ThJ, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Kluwer, Dordrecht, pp 129–170

    Google Scholar 

  • Chen W, Syldath U, Bellmann K, Burkart V, Kolb W (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    PubMed  CAS  Google Scholar 

  • Cheng W, Wang LU, Chen JC (2005) Effect of water temperature on the immune response of white shrimp Litopenaeus vamnnamei to Vibrio alginolyticus. Aquaculture 250:592–601

    Article  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioural homeostasis. J Am Med Assoc 267:1244–1252

    Article  CAS  Google Scholar 

  • Das P, Gupta A, Manna SK (2005) Heat shock protein 70 expression in different tissues of Cirrhinus mrigala (Ham.) following heat stress. Aquaculture Res 36:525–529

    Article  CAS  Google Scholar 

  • Defoirdt T, Halet D, Sorgeloos P, Bossier P, Verstraete W (2006) Short-chain fatty acids protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. Aquaculture 261:804–808

    Article  CAS  Google Scholar 

  • Delaney MA, Klesius PH (2004) Hypoxic conditions induce Hsp70 production in blood, brain and head kidney of juvenile Nile tilapia Oreochromis niloticus (L.). Aquaculture 236:633–644

    Article  CAS  Google Scholar 

  • de la Vega E, Hall MR, Degnan BM, Wilson KJ (2006) Short-term hyperthermic treatment of Penaeus monodon increases expression of heat shock protein 70 (HSP70) and reduces replication of gill associated virus (GAV). Aquaculture 253:82–90

    Article  Google Scholar 

  • DuBeau SF, Pan F, Tremblay GC, Bradley TM (1998) Thermal shock of salmon in vivo induces the heat shock protein hsp 70 and confers protection against osmotic shock. Aquaculture 168:311–323

    Article  CAS  Google Scholar 

  • Frankenberg MM, Jackson SA, Clegg JS (2000) The heat shock response of adult Artemia franciscana. J Thermal Biol 25:481–490

    Article  CAS  Google Scholar 

  • Harris RBS, Zhou J, Youngblood BD, Rybkin II, Smagin GN, Ryan DH (1998) Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. Am J Physiol Regul Integr Comp Physiol 275:1928–1938

    Google Scholar 

  • Jean S, De Jong L, Moreau X (2004) Chaetognaths: a useful model for studying heat shock proteins. Effect of wound healing. J Exp Mar Biol Ecol 312:319–332

    Article  CAS  Google Scholar 

  • Johnson JD, Fleshner M (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol 79:425–434

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Morimoto RI (1999) Stress and the cell nucleus: dynamics of gene expression and structural reorganization. Gene 7:261–270

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P (1998) Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol 8:621–629

    Article  Google Scholar 

  • Liang P, MacRae TH (1999) The synthesis of a small heat shock/a-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207:445–456

    Article  PubMed  CAS  Google Scholar 

  • Liao CM, Chang CF, Yeh CH, Chen SC, Chiang KC, Chio CP, Chou BYH, Jou LJ, Lien GW, Lin CM, Shen HH, Wu GD (2006) Metal stresses affect the population dynamics of disease transmission in aquaculture species. Aquaculture 257:321–332

    Article  CAS  Google Scholar 

  • Lindquist S (1992) Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 2:748–755

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Ann Rev Gen 22:631–677

    Article  CAS  Google Scholar 

  • Livingstone DR (1985) Biochemical measurements. In: Bayne BL (ed) The effects of stress and pollution on marine animals. Praeger, NY, pp 81–132

    Google Scholar 

  • Marques A, Dhont J, Sorgeloos P, Bossier P (2004a) Evaluation of different yeast cell wall mutants and microalgae strains as feed for gnotobiotically grown brine shrimp Artemia franciscana. J Exp Mar Biol Ecol 321:115–136

    Article  Google Scholar 

  • Marques A, Dhont J, Sorgeloos P, Bossier P (2006a) Immunostimulatory nature of β-glucans and baker’s yeast in the challenge test of Artemia. Fish Shellfish Immunol 20:682–692

    Article  PubMed  CAS  Google Scholar 

  • Marques A, Thanh TH, Sorgeloos P, Bossier P (2006b) Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against different pathogens. Aquaculture 258:116–126

    Article  Google Scholar 

  • Marques A, Thanh TH, Verstraete W, Dhont J, Sorgeloos P, Bossier P (2006c) Use of selected bacteria and yeast to protect gnotobiotic Artemia against different pathogens. J Exp Mar Biol Ecol 334:20–30

    Article  Google Scholar 

  • Ménoret A (2004) Purification of recombinant and endogenous HSP70s. Methods 32:7–12

    Article  PubMed  Google Scholar 

  • Merchie G (1996) Use of nauplii and meta-nauplii. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper. No. 361, Rome, pp 137–163

  • Mercier L, Palacios E, Campa-Córdova AI, Tovar-Ramírez D, Hernández-Herrera R, Racotta IS (2006) Metabolic and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei exposed to a repeated handling stress. Aquaculture 258:633–640

    Article  Google Scholar 

  • Miller D, McLennan AG (1988a) The heat shock response of the cryptobiotic brine shrimp Artemia—I. Thermotolerance. J Thermal Biol 13:119–123

    Article  Google Scholar 

  • Miller D, McLennan AG (1988b) The heat shock response of the cryptobiotic brine shrimp Artemia—II. Heat shock proteins. J Thermal Biol 13:125–134

    Article  CAS  Google Scholar 

  • Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003

    PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1994) Heat shock proteins and stress tolerance. In: Morimoto RI, Tissieres A, Georgopoulos C (eds.) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, NY, pp 457–494

    Google Scholar 

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476

    Article  PubMed  CAS  Google Scholar 

  • Robert J (2003) Evolution of heat shock protein and immunity. Dev Comp Immunol 27:449–464

    Article  PubMed  CAS  Google Scholar 

  • Singh V, Aballay A (2006a) Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc Natl Acad Sci USA 103:13092–13097

    Article  PubMed  CAS  Google Scholar 

  • Singh V, Aballay A (2006b) Heat-shock and gene activation of HSF-1 enhance immunity to bacteria. Cell Cycle 21:2443–2446

    Google Scholar 

  • Song LS, Wu LT, Ni DJ, Chang YQ, Xu W, Xing KZ (2006) The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish Shellfish Immunol 21:335–345

    Article  PubMed  CAS  Google Scholar 

  • Sorgeloos P, Lavens P, Léger P, Tackaert W, Versichele D (1986) Manual for the culture and use of brine shrimp Artemia in aquaculture. Artemia Reference Center Faculty of Agriculture State University of Ghent, Ghent, Belgium

    Google Scholar 

  • Sørensen JG, Loeschcke V (2001) Larval crowding in Drosophila melanogaster induces hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J Insect Physiol 47:1301–1307

    Article  PubMed  Google Scholar 

  • Steinert SA, Pickwell GV (1993) Induction of hsp70 proteins in mussels by ingestion of tributyltin. Responses of marine organisms to pollutants. Part 2. Environ Res 35:89–93

    Article  CAS  Google Scholar 

  • Sung YY, Van Damme EJM, Sorgeloos P, Bossier P (2007) Non-lethal heat shock protects gnotobiotic Artemia franciscana larvae against virulent Vibrios. Fish Shellfish Immunol 22:318–326

    Article  CAS  Google Scholar 

  • Todgham AE, Schulte PM, Iwama GK (2005) Cross-tolerance in the tidepool sculpin: the role of heat shock proteins. Physiol Biochem Zool 78:133–144

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    Article  PubMed  CAS  Google Scholar 

  • Van Stappen G (2002) Zoogeography. In: Abatzopoulos ThJ, Beardmore JA, Clegg JS, Sorgeloos P (eds) Artemia: basic and applied biology. Kluwer, Dordrecht, pp 171–224

    Google Scholar 

  • Varsamos S, Flik G, Pepin JF, Wendelaar BSE, Breuil G (2006) Husbandry stress during early life stages affects the stress response and health status of juvenile sea bass, Dicentrarchus labrax. Fish Shellfish Immunol 20:83–96

    Article  PubMed  CAS  Google Scholar 

  • Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 166:249–255

    PubMed  CAS  Google Scholar 

  • Volker U, Mach R, Schmid R, Hecker M (1992) Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. J Gen Microbiol 138:2125–2135

    PubMed  CAS  Google Scholar 

  • Wang FI, Chen JC (2006a) Effect of salinity on the immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp. damselae. Fish Shellfish Immunol 20:671–681

    Article  PubMed  CAS  Google Scholar 

  • Wang FI, Chen JC (2006b) The immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp. damselae under temperature stress. Aquaculture 258:34–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Universiti Malaysia Terengganu (UMT; formerly known as University College of Science and Technology Malaysia, KUSTEM) through a doctoral grant to YYS and research funding supported by the Belgian Foundation for Scientific Research (FWO) through the project “Nutritional and immunostimulatory characteristics of isogenic yeast mutants in Artemia” (1.5.125.04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Yik Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, Y.Y., Pineda, C., MacRae, T.H. et al. Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii . Cell Stress and Chaperones 13, 59–66 (2008). https://doi.org/10.1007/s12192-008-0011-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0011-y

Keywords

Navigation