Skip to main content
Log in

Dynamic analysis of a SIS epidemic model with nonlinear incidence and ratio dependent pulse control

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a SIS epidemic model with nonlinear incidence and ratio dependent pulse control is proposed and analyzed. Firstly, for the system that ignores the effect of pulses, the basic reproductive number \(R_0\) is derived using the next-generation matrix method, and the stability of the equilibria of the system is analyzed. And then the dynamics of the system containing pulse effects was investigated. The existence of periodic solutions has been proven by constructing appropriate Poincaré mappings and using the fixed point theorem. We found that pulses have a significant impact on system dynamics. Under the influence of pulses, the system trajectory undergoes periodic oscillations, which are verified by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. World Health Organization. COVID-19 situation [EB/OL]. https://covid19.who.int/

  2. World Health Organization. Monkeypox situation [EB/OL]. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON381

  3. General Administration of Customs People’s Republic of China. The situation of Monkeypox infection [EB/OL]. http://wss.customs.gov.cn/wss/zcfg32/flfg70/5292628/index.html

  4. Sherman, M.: Nuevas estrategias de tratamiento en la hepatitis B crónica. Nat. Clin. Pract. Gastroenterol. Hepatol. 4(2), 3–6 (2007)

    Article  Google Scholar 

  5. Larsen, S.L., Shin, I., Joseph, J., West, H., Anorga, R., Mena, G.E., Mahmud, A.S., Martinez, P.P.: Quantifying the impact of SARS-CoV-2 temporal vaccination trends and disparities on disease control. Sci. Adv. 9(31), 9920 (2023)

    Article  Google Scholar 

  6. Gibas, K.M., Kelly, S.G., Arribas, J.R., Cahn, P., Orkin, C., Daar, E.S., Sax, P.E., Taiwo, B.O.: Two-drug regimens for HIV treatment. Lancet HIV 9(12), 868–883 (2022)

    Article  Google Scholar 

  7. Peng, Q., Xie, Y., Kuai, L., Wang, H., Qi, J., Gao, G.F., Shi, Y.: Structure of monkeypox virus DNA polymerase holoenzyme. Science 379(6627), 100–105 (2023)

    Article  Google Scholar 

  8. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115(772), 700–721 (1927)

    Article  Google Scholar 

  9. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. II—The problem of endemicity. Proc. R. Soc. Lond. A 138(834), 55–83 (1932)

    Article  Google Scholar 

  10. Yang, Y., Wang, J., Zhang, S., Zhang, T.: Dynamical analysis of a fractional order HCV infection model with acute and chronic and general incidence rate. J. Appl. Anal. Comput. 12(6), 2283–2298 (2022)

    MathSciNet  Google Scholar 

  11. Wang, W., Wang, X., Fan, X.: Threshold dynamics of a reaction–advection–diffusion waterborne disease model with seasonality and human behavior change. Int. J. Biomath. https://doi.org/10.1142/S1793524523501061

  12. Xu, R., Ma, Z.: Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal. Real World Appl. 10(5), 3175–3189 (2009)

    Article  MathSciNet  Google Scholar 

  13. Wang, W.: Global behavior of an SEIRS epidemic model with time delays. Appl. Math. Lett. 15(4), 423–428 (2002)

    Article  MathSciNet  Google Scholar 

  14. Guo, K., Ma, W.: Permanence and extinction for a nonautonomous Kawasaki disease model with time delays. Appl. Math. Lett. 122, 107511 (2021)

    Article  MathSciNet  Google Scholar 

  15. Lv, J., Ma, W.: Global asymptotic stability of a delay differential equation model for SARS-CoV-2 virus infection mediated by ACE2 receptor protein. Appl. Math. Lett. 142, 108631 (2023)

    Article  MathSciNet  Google Scholar 

  16. Sun, G., Jin, Z., Mai, A.: Dynamics of a two-patch SIR model with disease surveillance mediated infection force. Commun. Nonlinear Sci. Numer. Simul. 132, 107872 (2024)

    Article  MathSciNet  Google Scholar 

  17. Pei, Y., Shen, N., Zhao, J., Yu, Y., Chen, Y.: Analysis and simulation of a delayed HIV model with reaction-diffusion and sliding control. Math. Comput. Simul. 212, 382–405 (2023)

    Article  MathSciNet  Google Scholar 

  18. Ren, X., Wang, K., Liu, X.: Dynamics on a degenerated reaction-diffusion Zika transmission model. Appl. Math. Lett. 150, 108935 (2024)

    Article  MathSciNet  Google Scholar 

  19. Chen, Y., Song, H., Liu, S.: Evaluations of COVID-19 epidemic models with multiple susceptible compartments using exponential and non-exponential distribution for disease stages. Infect. Dis. Model. 7(4), 795–810 (2022)

    Google Scholar 

  20. Chen, X., Cui, R.: Analysis on a spatial SIS epidemic model with saturated incidence function in advective environments: I. Conserved Total Population. SIAM J. Appl. Math. 83(6), 2522–2544 (2023)

    Article  MathSciNet  Google Scholar 

  21. Cui, W., Zhao, Y.: Saddle-node bifurcation and Bogdanov–Takens bifurcation of a SIRS epidemic model with nonlinear incidence rate. J. Differ. Equ. 384, 252–278 (2024)

    Article  MathSciNet  Google Scholar 

  22. Whittaker, D.G., Herrera-Reyes, A.D., Hendrix, M., Owen, M.R., Band, L.R., Mirams, G.R., Bolton, K.J., Preston, S.P.: Uncertainty and error in SARS-CoV-2 epidemiological parameters inferred from population-level epidemic models. J. Theor. Biol. 558, 111337 (2023)

    Article  MathSciNet  Google Scholar 

  23. Xie, Y., Wang, Z.: A ratio-dependent impulsive control of an SIQS epidemic model with non-linear incidence. Appl. Math. Comput. 423, 127018 (2022)

    MathSciNet  Google Scholar 

  24. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208(2), 419–429 (2007)

    Article  MathSciNet  Google Scholar 

  25. Xiao, Y., Tang, S.: Dynamics of infection with nonlinear incidence in a simple vaccination model. Nonlinear Anal. Real World Appl. 11(5), 4154–4163 (2010)

    Article  MathSciNet  Google Scholar 

  26. Fan, G., Song, H., Yip, S., Zhang, T., He, D.: Impact of low vaccine coverage on the resurgence of COVID-19 in Central and Eastern Europe. One Health 14, 100402 (2022)

    Article  Google Scholar 

  27. Xu, R.: Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl. Math. Model. 36(11), 5293–5300 (2012)

    Article  MathSciNet  Google Scholar 

  28. Tian, X., Xu, R., Lin, J.: Mathematical analysis of a cholera infection model with vaccination strategy. Appl. Math. Comput. 361, 517–535 (2019)

    MathSciNet  Google Scholar 

  29. Makinde, O.D.: Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy. Appl. Math. Comput. 184(2), 842–848 (2007)

    MathSciNet  Google Scholar 

  30. Li, J., Ma, Z., Zhou, Y.: Global analysis of SIS epidemic model with a simple vaccination and multiple endemic equilibria. Acta Math. Sci. 26(1), 83–93 (2006)

    Article  MathSciNet  Google Scholar 

  31. Tang, B., Xiao, Y., Tang, S., Cheke, R.A.: A feedback control model of comprehensive therapy for treating immunogenic tumours. Int. J. Bifurc. Chaos 26(03), 1650039 (2016)

    Article  MathSciNet  Google Scholar 

  32. Deng, J., Tang, S., Shu, H.: Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19. J. Theor. Biol. 523, 110698 (2021)

    Article  MathSciNet  Google Scholar 

  33. De la Sen, M., Alonso-Quesada, S., Ibeas, A., Nistal, R.: On an SEIADR epidemic model with vaccination, treatment and dead-infectious corpses removal controls. Math. Comput. Simul. 163, 47–79 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Z., Suo, Y.: Qualitative analysis of a SIR epidemic model with saturated treatment rate. J. Appl. Math. Comput. 34(1), 177–194 (2010)

    Article  MathSciNet  Google Scholar 

  35. Li, L., Bai, Y., Jin, Z.: Periodic solutions of an epidemic model with saturated treatment. Nonlinear Dyn. 76(2), 1099–1108 (2014)

    Article  MathSciNet  Google Scholar 

  36. Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal. Real World Appl. 12(1), 320–332 (2011)

    Article  MathSciNet  Google Scholar 

  37. Agur, Z., Cojocaru, L., Mazor, G., Anderson, R.M., Danon, Y.L.: Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 90(24), 11698–11702 (1993)

    Article  Google Scholar 

  38. d’Onofrio, A.: Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures. Math. Comput. Model. 36(4), 473–489 (2002)

    Article  MathSciNet  Google Scholar 

  39. Zhou, Y., Liu, H.: Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model. 38(3), 299–308 (2003)

    Article  MathSciNet  Google Scholar 

  40. Pang, G., Chen, L.: A delayed SIRS epidemic model with pulse vaccination. Chaos Solitons Fractals 34(5), 1629–1635 (2007)

    Article  MathSciNet  Google Scholar 

  41. Wei, H., Jiang, Y., Song, X., Su, G.H., Qiu, S.Z.: Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay. J. Comput. Appl. Math. 229(1), 302–312 (2009)

    Article  MathSciNet  Google Scholar 

  42. Alonso-Quesada, S., De la Sen, M., Ibeas, A.: On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination. Commun. Nonlinear Sci. Numer. Simul. 42, 247–274 (2017)

    Article  MathSciNet  Google Scholar 

  43. Yang, Y., Xiao, Y.: The effects of population dispersal and pulse vaccination on disease control. Math. Comput. Model. 52(9), 1591–1604 (2010)

    Article  MathSciNet  Google Scholar 

  44. Liu, H., Yu, J., Zhu, G.: Global behaviour of an age-infection-structured HIV model with impulsive drug-treatment strategy. J. Theor. Biol. 253(4), 749–754 (2008)

    Article  MathSciNet  Google Scholar 

  45. Zhao, Z., Pang, L., Li, Q.: Analysis of a hybrid impulsive tumor-immune model with immunotherapy and chemotherapy. Chaos Solitons Fractals 144, 110617 (2021)

    Article  MathSciNet  Google Scholar 

  46. Tang, B., Li, Q., Xiao, Y., Sivaloganathan, S.: A novel hybrid model of tumor control, combining pulse surveillance with tumor size-guided therapies. Appl. Math. Model. 104, 259–278 (2022)

    Article  MathSciNet  Google Scholar 

  47. Li, J., Yang, Y.: SIR-SVS epidemic models with continuous and impulsive vaccination strategies. J. Theor. Biol. 280(1), 108–116 (2011)

    Article  MathSciNet  Google Scholar 

  48. Guo, H., Chen, L.: Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control. J. Theor. Biol. 260(4), 502–509 (2009)

    Article  MathSciNet  Google Scholar 

  49. Sun, K., Tian, Y., Chen, L., Kasperski, A.: Nonlinear modelling of a synchronized chemostat with impulsive state feedback control. Math. Comput. Model. 52(1), 227–240 (2010)

    Article  MathSciNet  Google Scholar 

  50. Li, Z., Chen, L., Liu, Z.: Periodic solution of a chemostat model with variable yield and impulsive state feedback control. Appl. Math. Model. 36(3), 1255–1266 (2012)

    Article  MathSciNet  Google Scholar 

  51. Yang, J., Tan, Y., Cheke, R.A.: Complex dynamics of an impulsive chemostat model. Int. J. Bifurc. Chaos 29(08), 1950101 (2019)

    Article  MathSciNet  Google Scholar 

  52. Zhao, Z., Zhang, J., Pang, L., Chen, Y.: Nonlinear modelling of ethanol inhibition with the state feedback control. J. Appl. Math. Comput. 48(1), 205–219 (2015)

    Article  MathSciNet  Google Scholar 

  53. Zhang, Q., Tang, S.: Bifurcation analysis of an ecological model with nonlinear state-dependent feedback control by poincaré map defined in phase set. Commun. Nonlinear Sci. Numer. Simul. 108, 106212 (2022)

    Article  Google Scholar 

  54. Tang, S., Li, C., Tang, B., Wang, X.: Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-ump discrete map. Commun. Nonlinear Sci. Numer. Simul. 79, 104900 (2019)

    Article  MathSciNet  Google Scholar 

  55. Tang, S., Cheke, R.A.: Models for integrated pest control and their biological implications. Math. Biosci. 215(1), 115–125 (2008)

    Article  MathSciNet  Google Scholar 

  56. Tian, Y., Li, C., Liu, J.: Non-smooth competitive systems and complex dynamics induced by linearly dependent feedback control. Nonlinear Anal. Hybrid Syst. 51, 101442 (2024)

    Article  MathSciNet  Google Scholar 

  57. Tian, Y., Li, H., Sun, K.: Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting. Math. Comput. Simul. 218, 31–48 (2024)

    Article  MathSciNet  Google Scholar 

  58. Zhang, Q., Tang, B., Cheng, T., Tang, S.: Bifurcation analysis of a generalized impulsive Kolmogorov model with applications to pest and disease control. SIAM J. Appl. Math. 80(4), 1796–1819 (2020)

    Article  MathSciNet  Google Scholar 

  59. Guo, H., Tian, Y., Sun, K., Song, X.: Study on dynamic behavior of two fishery harvesting models: effects of variable prey refuge and imprecise biological parameters. J. Appl. Math. Comput. 69(6), 4243–4268 (2023)

    Article  MathSciNet  Google Scholar 

  60. Zhang, Q., Tang, S., Zou, X.: Rich dynamics of a predator-prey system with state-dependent impulsive controls switching between two means. J. Differ. Equ. 364, 336–377 (2023)

    Article  MathSciNet  Google Scholar 

  61. Zhang, M., Xiao, X., Feng, X.: Numerical simulations for the predator-prey model on surfaces with lumped mass method. Eng. Comput. 37(3), 2047–2058 (2021)

    Article  Google Scholar 

  62. Tang, S., Tang, B., Wang, A., Xiao, Y.: Holling II predator-prey impulsive semi-dynamic model with complex poincaré map. Nonlinear Dyn. 81(3), 1575–1596 (2015)

    Article  Google Scholar 

  63. Tang, G., Tang, S., Cheke, R.A.: Global analysis of a Holling type II predator-prey model with a constant prey refuge. Nonlinear Dyn. 76(1), 635–647 (2014)

    Article  MathSciNet  Google Scholar 

  64. Cheng, T., Tang, S., Cheke, R.A.: Threshold dynamics and bifurcation of a state-dependent feedback nonlinear control susceptible-infected-recovered model. J. Comput. Nonlinear Dyn. 14(7), 071001 (2019)

    Article  Google Scholar 

  65. Zhang, Q., Tang, B., Tang, S.: Vaccination threshold size and backward bifurcation of SIR model with state-dependent pulse control. J. Theor. Biol. 455, 75–85 (2018)

    Article  MathSciNet  Google Scholar 

  66. Nie, L., Teng, Z., Torres, A.: Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination. Nonlinear Anal. Real World Appl. 13(4), 1621–1629 (2012)

    Article  MathSciNet  Google Scholar 

  67. Nie, L., Teng, Z., Guo, B.: A state dependent pulse control strategy for a SIRS epidemic system. Bull. Math. Biol. 75(10), 1697–1715 (2013)

    Article  MathSciNet  Google Scholar 

  68. Nie, L., Shen, J., Yang, C.: Dynamic behavior analysis of SIVS epidemic models with state-dependent pulse vaccination. Nonlinear Anal. Hybrid Syst. 27, 258–270 (2018)

    Article  MathSciNet  Google Scholar 

  69. Huang, M., Li, J., Song, X., Guo, H.: Modeling impulsive injections of insulin: towards artificial pancreas. SIAM J. Appl. Math. 72(5), 1524–1548 (2012)

    Article  MathSciNet  Google Scholar 

  70. Liu, Q., Zhang, M., Chen, L.: State feedback impulsive therapy to SIS model of animal infectious diseases. Physica A 516, 222–232 (2019)

    Article  MathSciNet  Google Scholar 

  71. Kim, K.S., Cho, G., Nie, L.-F., Jung, I.H., Kon, R.: State-dependent impulsive control strategies for a tumor-immune model. Discrete Dyn. Nat. Soc. 2016, 2979414 (2016)

    Article  MathSciNet  Google Scholar 

  72. Li, W., Ji, J., Huang, L.: Global dynamic behavior of a predator-prey model under ratio-dependent state impulsive control. Appl. Math. Model. 77, 1842–1859 (2020)

    Article  MathSciNet  Google Scholar 

  73. Li, W., Ji, J., Huang, L., Zhang, Y.: Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy. Chaos Solitons Fractals 167, 113077 (2023)

    Article  MathSciNet  Google Scholar 

  74. Simeonov, P.S., Bainov, D.D.: Orbital stability of the periodic solutions of autonomous systems with impulse effect. Int. J. Syst. Sci. 19(12), 2561–2585 (1988)

    Article  MathSciNet  Google Scholar 

  75. LaSalle, J.P.: An Invariance Principle in the Theory of Stability. Technical report. Academic Press, New York (1966)

    Google Scholar 

  76. Fečkan, M.: A generalization of Bendixson’s criterion. Proc. Am. Math. Soc. 129(11), 3395–3399 (2001)

    Article  MathSciNet  Google Scholar 

  77. Agarwal, R.P., Meehan, M., O’regan, D.: Fixed Point Theory and Applications. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant No. 12271308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongqian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhang, T. Dynamic analysis of a SIS epidemic model with nonlinear incidence and ratio dependent pulse control. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02109-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02109-0

Keywords

Mathematics Subject Classification

Navigation