Skip to main content
Log in

A binary Caputo–Fabrizio fractional reproducing kernel method for the time-fractional Cattaneo equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The fractional Cattaneo equation based on the Caputo–Fabrizio derivative is commonly utilized in physical science due to its hyperbolic property and nonsingular property. In this paper, we present a binary fractional reproducing kernel collocation method based on the Caputo–Fabrizio derivative for solving the time-fractional Cattaneo equation. The Caputo–Fabrizio fractional reproducing kernel space and its reproducing kernel function are proposed. On this basis, we construct a binary fractional reproducing kernel space as the solution space. A set of two-dimensional bases are constructed using the Caputo–Fabrizio fractional-order reproducing kernel function and the shifted Legendre reproducing kernel function, which in turn leads to the approximate solution of the problem. In addition, some detailed numerical analysis of the proposed algorithm, such as convergence and stability, is carried out. Numerical experiments verified the effectiveness and accuracy of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tavares, D., Almeida, R., Torres, D.F.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sardar, M., Khajanchi, S.: Is the allee effect relevant to stochastic cancer model? J. Appl. Math. Comput. 68(4), 2293–2315 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rai, R.K., Khajanchi, S., Tiwari, P.K., Venturino, E., Misra, A.K.: Impact of social media advertisements on the transmission dynamics of covid-19 pandemic in India. J. Appl. Math. Comput. 68, 19–44 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tiwari, P.K., Rai, R.K., Khajanchi, S., Gupta, R.K., Misra, A.K.: Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns. Eur. Phys. J. Plus 136(10), 994 (2021)

    Article  Google Scholar 

  5. Ahmad, I., Seadawy, A.R., Ahmad, H., Thounthong, P., Wang, F.: Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method. Int. J. Nonlinear Sci. Numer. Simul. 23(1), 115–122 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, F., Khan, A., Ayaz, M., Ahmad, I., Nawaz, R., Gul, N.: Formation of intermetallic phases in ion implantation. J. Math. 2020, 1–5 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Wang, F., Ali, S.N., Ahmad, I., Ahmad, H., Alam, K.M., Thounthong, P.: Solution of burgers equation appears in fluid mechanics by multistage optimal homotopy asymptotic method. Therm. Sci. 26(1 Part B), 815–821 (2022)

    Article  Google Scholar 

  8. Shah, N.A., Ahmad, I., Bazighifan, O., Abouelregal, A.E., Ahmad, H.: Multistage optimal homotopy asymptotic method for the nonlinear Riccati ordinary differential equation in nonlinear physics. Appl. Math. 14(6), 1009–1016 (2020)

    MathSciNet  Google Scholar 

  9. Wang, F., Zheng, K., Ahmad, I., Ahmad, H.: Gaussian radial basis functions method for linear and nonlinear convection–diffusion models in physical phenomena. Open Phys. 19(1), 69–76 (2021)

    Article  Google Scholar 

  10. Liu, X., Ahsan, M., Ahmad, M., Nisar, M., Liu, X., Ahmad, I., Ahmad, H.: Applications of Haar wavelet-finite difference hybrid method and its convergence for hyperbolic nonlinear Schrödinger equation with energy and mass conversion. Energies 14(23), 7831 (2021)

    Article  Google Scholar 

  11. Wang, F., Hou, E., Ahmad, I., Ahmad, H., Gu, Y.: An efficient meshless method for hyperbolic telegraph equations in (1+1) dimensions. CMEs-Comput. Model. Eng. 128(2), 687–98 (2021)

    Google Scholar 

  12. Yang, J., Guo, Z., Wu, B., Du, S.: A nonlinear anisotropic diffusion model with non-standard growth for image segmentation. Appl. Math. Lett. 141, 108627 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  13. Akram, T., Abbas, M., Riaz, M.B., Ismail, A.I., Ali, N.M.: An efficient numerical technique for solving time fractional burgers equation. Alex. Eng. J. 59(4), 2201–2220 (2020)

    Article  Google Scholar 

  14. Shakeel, M., Hussain, I., Ahmad, H., Ahmad, I., Thounthong, P., Zhang, Y.-F.: Meshless technique for the solution of time-fractional partial differential equations having real-world applications. J. Funct. Spaces 2020, 1–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, F., Ahmad, I., Ahmad, H., Alsulami, M., Alimgeer, K., Cesarano, C., Nofal, T.A.: Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons. J. King Saud Univ. Sci. 33(8), 101604 (2021)

    Article  Google Scholar 

  16. Li, J.-F., Ahmad, I., Ahmad, H., Shah, D., Chu, Y.-M., Thounthong, P., Ayaz, M.: Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method. Open Phys. 18(1), 1063–1072 (2020)

    Article  Google Scholar 

  17. Ahmad, I., Ahmad, H., Inc, M., Rezazadeh, H., Akbar, M.A., Khater, M.M., Akinyemi, L., Jhangeer, A.: Solution of fractional-order Korteweg-de Vries and burgers equations utilizing local meshless method. J. Ocean Eng. Sci. (2021). https://doi.org/10.1016/j.joes.2021.08.014

    Article  Google Scholar 

  18. Al-Smadi, M., Abu Arqub, O., Gaith, M.: Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math. Methods Appl. Sci. 44(10), 8472–8489 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  20. Vong, S.-W., Pang, H.-K., Jin, X.-Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2(2), 170–184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Godoy, S., Garcia-Colin, L.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53(6), 5779 (1996)

    Article  Google Scholar 

  22. Jou, D., Casas-Vázquez, J., Lebon, G., Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  23. Gómez, H., Colominas, I., Navarrina, F., Casteleiro, M.: A mathematical model and a numerical model for hyperbolic mass transport in compressible flows. Heat Mass Transf. 45, 219–226 (2008)

    Article  MATH  Google Scholar 

  24. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 30(21), 7277 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Siedlecka, U., Ciesielski, M.: Analysis of solutions of the 1d fractional Cattaneo heat transfer equation. J. Appl. Math. Comput. Mech. 20(4), 87–98 (2021)

    Article  MathSciNet  Google Scholar 

  26. Yaseen, M., Nisa Arif, Q.U., George, R., Khan, S.: Comparative numerical study of spline-based numerical techniques for time fractional Cattaneo equation in the sense of caputo-fabrizio. Fractal Fract. 6(2), 50 (2022)

    Article  Google Scholar 

  27. Taghipour, M., Aminikhah, H.: A \(\theta \)-finite difference scheme based on cubic b-spline quasi-interpolation for the time fractional Cattaneo equation with caputo-fabrizio operator. J. Differ. Equ. Appl. 27(5), 712–738 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Arqub, O.A.: Numerical solutions for the robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28(4), 828–856 (2018)

    Article  Google Scholar 

  29. Abu Arqub, O.: Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing kernel method. Int. J. Numer. Methods Heat Fluid Flow 30(11), 4711–4733 (2020)

    Article  Google Scholar 

  30. Arqub, O.A., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media 22(4), 411–434 (2019)

    Article  Google Scholar 

  31. Maayah, B., Arqub, O.A., Alnabulsi, S., Alsulami, H.: Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana–Baleanu–Caputo derivative and the reproducing kernel scheme. Chin. J. Phys. 80, 463–483 (2022)

    Article  MathSciNet  Google Scholar 

  32. Chen, Z., Wu, L., Lin, Y.: Exact solution of a class of fractional integro-differential equations with the weakly singular kernel based on a new fractional reproducing kernel space. Math. Methods Appl. Sci. 41(10), 3841–3855 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, R., Lin, Y.: A new algorithm for fractional differential equation based on fractional order reproducing kernel space. Math. Methods Appl. Sci. 44(2), 2171–2182 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Z., Chen, Q., Wang, Y., Li, X.: Solving two-sided fractional super-diffusive partial differential equations with variable coefficients in a class of new reproducing kernel spaces. Fractal Fract. 6(9), 492 (2022)

    Article  Google Scholar 

  35. Losada, J., Nieto, J.J.: Fractional integral associated to fractional derivatives with nonsingular kernels. Progr. Fract. Differ. Appl 7(3), 1–7 (2021)

    Google Scholar 

  36. Akrami, M., Atabakzadeh, M., Erjaee, G.: The operational matrix of fractional integration for shifted Legendre polynomials. Iran. J. Sci. Technol. Trans. A Sci. 37(A4), 439–444 (2013)

    MathSciNet  Google Scholar 

  37. Su, X., Yang, J., Yao, H.: Shifted Legendre reproducing kernel Galerkin method for the quasilinear degenerate parabolic problem. Appl. Math. Lett. 135, 108416 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  38. Niu, J., Xu, M., Yao, G.: An efficient reproducing kernel method for solving the Allen–Cahn equation. Appl. Math. Lett. 89, 78–84 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cui, M., Lin, Y.: Nonlinear Numerical Analysis in Reproducing Kernel Space. Nova Science Publishers, New York (2009)

    MATH  Google Scholar 

  40. Wang, Y., Chaolu, T., Chen, Z.: Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems. Int. J. Comput. Math. 87(2), 367–380 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanmin Yao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Yang, J. & Yao, H. A binary Caputo–Fabrizio fractional reproducing kernel method for the time-fractional Cattaneo equation. J. Appl. Math. Comput. 69, 3755–3791 (2023). https://doi.org/10.1007/s12190-023-01902-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01902-7

Keywords

Mathematics Subject Classification

Navigation