Skip to main content
Log in

A projection-based derivative free DFP approach for solving system of nonlinear convex constrained monotone equations with image restoration applications

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The nonlinear programming makes use of quasi-Newton methods, a collection of optimization approaches when traditional Newton’s method are challenging due to the calculation of the Jacobian matrix and its inverse. Since the Jacobian matrix is computationally difficult to compute and sometimes not available specifically when dealing with non-smooth monotone systems, quasi-Newton methods with superlinear convergence are preferred for solving nonlinear system of equations. This paper provides a new version of the derivative-free David–Fletcher–Powell (DFP) approach for dealing with nonlinear monotone system of equations with convex constraints. The optimal value of the scaling parameter is found by minimizing the condition number of the DFP matrix. Under certain assumptions, the proposed method has global convergence, required minimal storage and is derivative-free. When compared to standard methods, the proposed method requires less iteration, function evaluations, and CPU time. The image restoration test problems demonstrate the method’s reliability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hively, G.A.: On a class of nonlinear integral equations arising in transport theory. SIAM J. Math. Anal. 9(5), 787–792 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Iusem, N.A., Solodov, V.M.: Newton-type methods with generalized distances for constrained optimization. Optimization 41(3), 257–278 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhao, Y.B., Li, D.: Monotonicity of fixed point and normal mappings associated with variational inequality and its application. SIAM J. Optim. 11(4), 962–973 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28(4), 828–856 (2018)

    Article  Google Scholar 

  5. Abu Arqub, O.: Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. Int. J. Numer. Methods Heat Fluid Flow 30(11), 4711–4733 (2020)

    Article  Google Scholar 

  6. Sweis, H., Omar Abu, A., Shawagfeh, N.: Fractional delay integro-differential equations of nonsingular kernels: Existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials. Int. J. Mode. Phys. C 34(4), 2350052

  7. Omar Abu, A., Al-Smadi, M.: Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm. J. Porous Media 23(8), 783–804

  8. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer Science & Business Media, Berlin (2006)

  9. Andrei, N.: A diagonal quasi-Newton updating method for unconstrained optimization. Numer. Algorithms 81(2), 575–590 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sabi’u, J., Shah, A., Waziri, M.Y.: A modified Hager–Zhang conjugate gradient method with optimal choices for solving monotone nonlinear equations. Int. J. Comput. Math. 99(2), 332–354 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davidon, W.C.: Variable metric method for minimization. SIAM J. Optim. 1(1), 1–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dingguo, P., Weiwen, T.: A class of Broyden algorithms with revised search directions. Asia-Pac. J. Oper. Res. 14(2), 93 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Pu, D.: Convergence of the DFP algorithm without exact line search. J. Optim. Theory Appl. 112(1), 187–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pu, D., Tian, W.: The revised DFP algorithm without exact line search. J. Comput. Appl. Math. 154(2), 319–339 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Waziri, M.Y., Leong, W.J., Hassan, M.A., Monsi, M.: A new Newton’s method with diagonal Jacobian approximation for systems of nonlinear equations. J. Math. Stat. 6(3), 246–252 (2010)

    Article  MATH  Google Scholar 

  17. Abubakar, A.B., Rilwan, J., Yimer, S.E., Ibrahim, A.H., Ahmed, I.: Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints. Thai J. Math. 18(1), 501–517 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Potra, F.A., Wright, S.J.: Interior-point methods. J. Comput. Appl. Math. 124(1–2), 281–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Reformulation: Nonsmooth, Piecewise Smooth, Semi-smooth and Smoothing Methods (pp. 355-369). Springer, Boston, MA (1998)

  20. Zhou, G., Toh, K.C.: Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory Appl. 125(1), 205–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou, W.J., Li, D.H.: A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math. Comput. 77(264), 2231–2240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou, W., Li, D.: Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 89–96 (2007)

  23. Wang, C., Wang, Y., Xu, C.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Methods Oper. Res. 66(1), 33–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, L., Zhou, W.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196(2), 478–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, Z., Lin, J., Sun, J., Xiao, Y., Liu, L., Li, Z.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59(10), 2416–2423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiao, Y., Zhu, H.: A conjugate gradient method to solve convex-constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405(1), 310–319 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16(1), 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hager, W.W., Zhang, H.: Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. (TOMS) 32(1), 113–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muhammed, A.A., Kumam, P., Abubakar, A.B., Wakili, A., Pakkaranang, N.: A new hybrid spectral gradient projection method for monotone system of nonlinear equations with convex constraints. Thai J. Math., 125–147 (2018)

  30. Sabi’u, J., Shah, A., Waziri, M.Y., Ahmed, K.: Modified Hager–Zhang conjugate gradient methods via singular value analysis for solving monotone nonlinear equations with convex constraint. Int. J. Comput. Methods 18(04), 2050043 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Awwal, A.M., Kumam, P., Sitthithakerngkiet, K., Bakoji, A.M., Halilu, A.S., Sulaiman, I.M.: Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application. AIMS Math. 6(8), 8792–8814 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rao, J., Huang, N.: A derivative-free scaling memoryless DFP method for solving large scale nonlinear monotone equations. J. Glob. Optim. 1–37 (2022)

  33. Ullah, N., Shah, A., Sabi’u, J., Jiao, X., Awwal, A. M., Pakkaranang, N., Panyanak, B.: A one-parameter memoryless DFP algorithm for solving system of monotone nonlinear equations with application in image processing. Mathematics, 11(5), 1221 (2023)

  34. Ali, R., Pan, K.: New generalized Gauss–Seidel iteration methods for solving absolute value equations. Math. Methods Appl. Sci. 1–8 (2023)

  35. Ali, R., Pan, K.: Two new fixed point iterative schemes for absolute value equations. Jpn. J. Ind. Appl. Math. 40, 303–314 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sabi’u, J., Shah, A.: An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations. RAIRO Oper. Res. 55, S1113–S1127 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (SSVM) algorithms: Part i: criteria and sufficient conditions for scaling a class of algorithms. Manag. Sci. 20(5), 845–862 (1974)

    Article  MATH  Google Scholar 

  38. Oren, S.S., Spedicato, E.: Optimal conditioning of self-scaling variable metric algorithms. Math. Program. 10(1), 70–90 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, J.K., Li, S.J.: A projection method for convex-constrained monotone nonlinear equations with applications. Comput. Math. Appl. 70(10), 2442–2453 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Zheng, L., Yang, L., Liang, Y.: A conjugate gradient projection method for solving equations with convex constraints. J. Comput. Appl. Math. 375, 112781 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ullah, N., Sabi’u, J., Shah, A.: A derivative-free scaling memoryless Broyden–Fletcher–Goldfarb–Shanno method for solving a system of monotone nonlinear equations. Numer. Linear Algebra Appl. 28(5), e2374 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sabi’u, J., Shah, A., Waziri, M.Y.: Two optimal Hager–Zhang conjugate gradient methods for solving monotone nonlinear equations. Appl. Numer. Math. 153, 217–233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  45. Pang, J.S.: Inexact Newton methods for the nonlinear complementarity problem. Math. Program. 36(1), 54–71 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiao, Y., Wang, Q., Hu, Q.: Non-smooth equations-based method for l1 norm problems with applications to compressed sensing. Nonlinear Anal. Theory Methods Appl. 74(11), 3570–3577 (2011)

    Article  MATH  Google Scholar 

  47. Awwal, A.M., Kumam, P., Mohammad, H., Watthayu, W., Abubakar, A.B.: A Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing \(l_{1}\) regularized problem. Optimization 70(5–6), 1231–1259 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Waziri, M.Y., Muhammad, L.: An accelerated three-term conjugate gradient algorithm for solving large-scale systems of nonlinear equations. Sohag J. Math 4, 1–8 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Shah.

Ethics declarations

Conflict of interest

This work does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ur Rehman, M., Sabi’u, J., Sohaib, M. et al. A projection-based derivative free DFP approach for solving system of nonlinear convex constrained monotone equations with image restoration applications. J. Appl. Math. Comput. 69, 3645–3673 (2023). https://doi.org/10.1007/s12190-023-01897-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01897-1

Keywords

Mathematics Subject Classification

Navigation