Skip to main content
Log in

An algorithm to estimate parameter in Müntz-Legendre polynomial approximation for the numerical solution of stochastic fractional integro-differential equation

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the Müntz-Legendre polynomial, which is generated from the fractional basis, and develop a collocation method with the help of operational matrices to solve the stochastic fractional integro-differential equation (SFIDE). For the need of our numerical method, we introduce the operational matrices of the Müntz-Legendre polynomial for the operators involved in the SFIDE. Moreover, we proposed an algorithm with the help of the differential evolution algorithm to find the Müntz space on which we get the best results. Further, we study the convergence analysis of the proposed method. Finally, the accuracy and efficiency of the numerical method show through some test examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alikhanov, A., Beshtokov, M., Mehra, M.: The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation. Fract. Calcul. Appl. Anal. 24(4), 1231–1256 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Patel, K.S., Mehra, M.: Fourth order compact scheme for space fractional advection-diffusion reaction equations with variable coefficients. J. Comput. Appl. Math. 380, 112963 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mehandiratta, V., Mehra, M.: A difference scheme for the time-fractional diffusion equation on a metric star graph. Appl. Numer. Math. 158, 152–163 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mehandiratta, V., Mehra, M.: Fractional optimal control problems on a star graph : optimality system and numerical solution. Math. Cont. Relat. Fields 1(1), 189–209 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Mehandiratta, V., Mehra, M., Leugering, G.: Existence and uniqueness results for a nonlinear caputo fractional boundary value problem on a star graph. J. Math. Anal. Appl. 477(2), 1243–1264 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tohidi, E., Nik, H.S.: A bessel collocation method for solving fractional optimal control problems. Appl. Math. Model. 39(2), 455–465 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Maurya, R.K., Devi, V., Singh, V.K.: Multistep schemes for one and two dimensional electromagnetic wave models based on fractional derivative approximation. J. Comput. Appl. Math. 380, 112985 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Etheridge, A., Baxter, M.: A course in financial calculus, Cambridge University Press, (2002)

  9. Miller, R.: On volterra’s population equation. SIAM J. Appl. Math. 14(3), 446–452 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kwok, S.F.: Langevin equation with multiplicative white noise: Transformation of diffusion processes into the wiener process in different prescriptions. Ann. Phys. 327(8), 1989–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order runge-kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mirzaee, F., Samadyar, N.: Application of orthonormal bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation. Optik 132, 262–273 (2017)

    Article  Google Scholar 

  13. Denisov, S.I., Hänggi, P., Kantz, H.: Parameters of the fractional Fokker-Planck equation. EPL Europhys. Lett. 85(4), 40007 (2009)

    Article  Google Scholar 

  14. Taheri, Z., Javadi, S., Babolian, E.: Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method. J. Comput. Appl. Math. 321, 336–347 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maleknejad, K., Khodabin, M., Rostami, M.: Numerical solution of stochastic volterra integral equations by a stochastic operational matrix based on block pulse functions. Math. Comput. Model. 55(3–4), 791–800 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mirzaee, F., Samadyar, N.: On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions. Eng. Anal. Boundary Elem. 100, 246–255 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Singh, A.K., Mehra, M.: Uncertainty quantification in fractional stochastic integro-differential equations using legendre wavelet collocation method, in: Krzhizhanovskaya V. et al. (eds) Computational Science - ICCS 2020. Lecture Notes in Computer Science, Vol. 12138, Springer, pp. 58–71 (2020)

  18. Singh, A.K., Mehra, M.: Wavelet collocation method based on legendre polynomials and its application in solving the stochastic fractional integro-differential equations. J. Comput. Sci. 51, 101342 (2021)

    Article  MathSciNet  Google Scholar 

  19. Kumar, K.H., Jiwari, R.: Legendre wavelets based numerical algorithm for simulation of multidimensional benjamin-bona-mahony-burgers and sobolev equations. Comput. Math. Appl. 80(3), 417–433 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harish Kumar, K., Jiwari, R.: A hybrid approach based on legendre wavelet for numerical simulation of helmholtz equation with complex solution. Int. J. Comput. Math. 99(11), 2221–2236 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Singh, A.K., Mehra, M.: Difference methods for stochastic space fractional diffusion equation driven by additive space-time white noise via wong-zakai approximation. J. Math. Chem. 61(1), 47–74 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar Singh, A., Mehra, M., Mehandiratta, V.: Numerical solution of variable-order stochastic fractional integro-differential equation with a collocation method based on müntz-legendre polynomial. Math. Methods Appl. Sci. 45(13), 8125–41 (2022)

    Article  MathSciNet  Google Scholar 

  23. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Singh, A.K., Mehra, M., Gulyani, S.: Learning parameters of a system of variable order fractional differential equations. Numer. Methods Partial Differ. Equ. (2021). https://doi.org/10.1002/num.22796

    Article  Google Scholar 

  25. Hosseinpour, S., Nazemi, A., Tohidi, E.: Müntz-legendre spectral collocation method for solving delay fractional optimal control problems. J. Comput. Appl. Math. 351, 344–363 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lord, G.J., Powell, C.E., Shardlow, T.: An introduction to computational stochastic PDEs, Vol. 50, Cambridge University Press, (2014)

  27. Shen, J., Tang, T., Wang, L.-L.: Spectral methods: algorithms, analysis and applications, Vol. 41, Springer Science & Business Media, (2011)

Download references

Acknowledgements

The first author acknowledges the support provided by University Grants Commission (UGC), India, under the grant number 20/12/2015(ii)EU-V. The second author acknowledges the support provided by the SERB, a statutory body of DST, India, under the award SERB–POWER fellowship (grant number SPF/2021/000103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Mehra.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Mehra, M. An algorithm to estimate parameter in Müntz-Legendre polynomial approximation for the numerical solution of stochastic fractional integro-differential equation. J. Appl. Math. Comput. 69, 2675–2694 (2023). https://doi.org/10.1007/s12190-023-01850-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01850-2

Keywords

Mathematics Subject Classification

Navigation