Skip to main content
Log in

Quantum codes from trace codes

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

For an odd prime p and a positive integer m, let \({\mathbb {F}}_{p^{m}}\) be the finite field with \(p^{m}\) elements. For \(D_{1}=\{d\in {\mathbb {F}}_{p^{m}}^{*} : \textrm{Tr}_{e}^{m}(d^{2})=0\}=\{d_{1},d_{2},\ldots ,d_{n}\}\)(say) and \(D_{2}=\{d\in {\mathbb {F}}_{p^{m}} : d^{k}=1\}\) (\(k=p^{l}-1\) for a divisor l of m), first we define classical linear codes by

$$\begin{aligned} {\mathcal {C}}_{D_{1}}= & {} \{(\textrm{Tr}_{e}^{m}(ad_{1}), \textrm{Tr}_{e}^{m}(ad_{2}),\ldots ,\textrm{Tr}_{e}^{m}(ad_{n})): a\in {\mathbb {F}}_{p^{m}}\}; \\ \overline{{\mathcal {C}}}_{D_{1}}= & {} \{( u+\textrm{Tr}_{e}^{m}(ad_{1}),u+\textrm{Tr}_{e}^{m}(ad_{2}),\ldots ,u+\textrm{Tr}_{e}^{m}(ad_{n})): a\in {\mathbb {F}}_{p^{m}}, u\in {\mathbb {F}}_{p^{e}}\}; \\ {\mathcal {C}}_{D_{2}}= & {} \{(\textrm{Tr}_{e}^{m}(ad_{1}),\ldots ,\textrm{Tr}_{e}^{m}(ad_{k}), u+\textrm{Tr}_{e}^{m}(ad_{1}),\ldots ,u+\textrm{Tr}_{e}^{m}(ad_{k})): \\ {}{} & {} a\in {\mathbb {F}}_{p^{m}}, u\in {\mathbb {F}}_{p^{e}}\}, \end{aligned}$$

where \(\textrm{Tr}^{m}_{e}\) denotes the trace function from \({\mathbb {F}}_{p^{m}}\) onto \({\mathbb {F}}_{p^{e}}\) and e is a divisor of m. Then we determine weight distribution of the code \(\overline{{\mathcal {C}}}_{D_{1}}\setminus {\mathcal {C}}_{D_{1}}\) and construct quantum codes from the codes \({\mathcal {C}}_{D_{1}}\) and \(\overline{{\mathcal {C}}}_{D_{1}}\) based on CSS code construction. Finally, we construct quantum code from the code \({\mathcal {C}}_{D_{2}}\) and show that the code obtained from \({\mathcal {C}}_{D_{2}}\) is MDS if and only if \(s=1,\) where \(s=\frac{m}{e}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R., Ding, C., Helleseth, T., Kløve, T.: How to build robust shared control systems. Des. Codes Cryptogr. 15(2), 111–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashikhmin, A., Litsyn, S.: Upper bounds on the size of quantum codes. IEEE Trans. Inform. Theory 45(4), 1206–1215 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F} }_{3}+v{\mathbb{F} }_{3}\). Int. J. Quantum Inf. 12(6), 1450042 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bag, T., Dinh, H.Q., Upadhyay, A.K., Bandi, R., Yamaka, W.: Quantum codes from skew constacycic codes over the ring \({\mathbb{F} }_{q}[u, v]/\langle u^{2}-1, v^{2}-1, uv-vu\rangle \). Discret. Math. 343, 111737 (2020)

    Article  MATH  Google Scholar 

  6. Calderbank, A.R., Goethals, J.M.: Three-weight codes and association schemes. Philips J. Res. 39(4–5), 143–152 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over \({{\rm GF }}(4)\). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  Google Scholar 

  9. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inform. Theory 51(6), 2089–2102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inform. Theory 61(6), 3265–3275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014)

    Article  Google Scholar 

  12. Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inform. Theory 61(11), 5828–5842 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, C., Helleseth, T., Kløve, T., Wang, X.: A generic construction of Cartesian authentication codes. IEEE Trans. Inform. Theory 53(6), 2229–2235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gottesman, D.: Stabilizer Codes and Quantum Error Correction. California Institute of Technology, California, Ph.D. Thesis, eprint: quantph/9705052, (1997)

  16. Hu, C., Yang, S., Yau, S.S.T.: Weight enumerators for nonbinary asymmetric quantum codes and their applications. Adv. Appl. Math. 121, 102085 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inform. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  MathSciNet  Google Scholar 

  19. Kumar, P., Khan, N.M.: A class of linear codes with their complete weight enumerators over finite fields. Cryptogr. Commun. 13(5), 695–725 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumar, P., Khan, N.M.: Three-weight and five-weight linear codes over finite fields. Kragujevac J. Math. 48(3), 345–364 (2024). (to appear)

    Google Scholar 

  21. Li, F., Wang, Q., Lin, D.: A class of three-weight and five-weight linear codes. Discrete Appl. Math. 241, 25–38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  23. Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Inf. Process. 19, 78 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, G., Cao, X., Xu, S., Mi, J.: Binary linear codes with two or three weights from niho exponents. Cryptogr. Commun. 10(2), 301–318 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rains, E.M.: Nonbinary quantum codes. IEEE Trans. Inform. Theory 45(6), 1827–1932 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  Google Scholar 

  27. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Q., Ding, K., Xue, R.: Binary linear codes with two-weights. IEEE Commun. Lett. 19(7), 1097–1100 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by University Grants Commission, New Delhi, India, under JRF in Science, Humanities & Social Sciences scheme under Grant number 11-04-2016-413564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Kumar.

Ethics declarations

Conflict of interest

Both the authors have contributed equally to complete the manuscript, and the order of authors is acceptable to both authors. The authors also declare that they have acknowledged all the funding agencies that have supported this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Khan, N.M. Quantum codes from trace codes. J. Appl. Math. Comput. 69, 1583–1598 (2023). https://doi.org/10.1007/s12190-022-01801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01801-3

Keywords

Mathematics Subject Classification

Navigation