Skip to main content
Log in

A novel approach for solving multi-term time fractional Volterra–Fredholm partial integro-differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This article deals with an efficient numerical technique to solve a class of multi-term time fractional Volterra–Fredholm partial integro-differential equations of first kind. The fractional derivatives are defined in Caputo sense. The Adomian decomposition method is used to construct the scheme. For simplicity of the analysis, the model problem is converted into a multi-term time fractional Volterra–Fredholm partial integro-differential equation of second kind. In addition, the convergence analysis and the condition for existence and uniqueness of the solution are provided. Several numerical examples are illustrated in support of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., Diagana, T.: Existence and attractivity results for some fractional order partial integro-differential equations with delay. Afr. Diaspora J. Math. 15(2), 87–100 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Adomian, G.: A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135(2), 501–544 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aghazadeh, N., Ravash, E., Rezapour, S.: Existence results and numerical solutions for a multi-term fractional integro-differential equation. Kragujev. J. Math. 43(3), 413–426 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Alquran, M., Jaradat, I., Sivasundaram, S.: Elegant scheme for solving Caputo-time fractional integro-differential equations. Nonlinear Stud. 25(2), 385–393 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Assaleh, K., Ahmad, W. M.: Modeling of speech signals using fractional calculus. In: 9th International Symposium on Signal Processing and Its Applications (2007)

  6. Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189(1), 541–548 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Daftardar-Gejji, V., Bhalekar, S.: Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput. 202(1), 113–120 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Darweesh, A., Alquran, M., Aghzawi, K.: New numerical treatment for a family of two-dimensional fractional Fredholm integro-differential equations. Algorithms 13(2), 37 (2020). https://doi.org/10.3390/a13020037

    Article  MathSciNet  Google Scholar 

  9. Das, P., Rana, S., Ramos, H.: A perturbation based approach for solving fractional order Volterra–Fredholm integro differential equations and its convergence analysis. Int. J. Comput. Math. 97(10), 1994–2014 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol. 2004. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  11. Hamoud, A.A., Ghadle, K.P.: Modified Laplace decomposition method for fractional Volterra–Fredholm integro-differential equations. J. Math. Model. 6(1), 91–104 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Hamoud, A.A., Ghadle, K.P., Issa, M.B.: Giniswamy: existence and uniqueness theorems for fractional Volterra–Fredholm integro-differential equations. Int. J. Appl. Math. 31(3), 333–348 (2018)

    Article  MathSciNet  Google Scholar 

  13. Jaradat, I., Al-Dolat, M., Al-Zoubi, K., Alquran, M.: Theory and applications of a more general form for fractional power series expansion. Chaos Solitons Fract. 108, 107–110 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaya, D., Aassila, M.: An application for a generalized KdV equation by the decomposition method. Phys. Lett. A 299(2–3), 201–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kudu, M., Amirali, I., Amiraliyev, G.M.: A fitted second-order difference method for a parameterized problem with integral boundary condition exhibiting initial layer. Mediterr. J. Math. (2021). https://doi.org/10.1007/s00009-021-01758-w

    Article  MathSciNet  MATH  Google Scholar 

  16. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803–806 (2002)

    Article  Google Scholar 

  17. Kumar, K., Pramod Chakravarthy, P., Vigo-Aguiar, J.: Numerical solution of time fractional singularly perturbed convection–diffusion problems with a delay in time. Math. Methods Appl. Sci. 44(4), 3080–3097 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C., Zeng, F.: Finite element methods for fractional differential equations. In: Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis, 49–68. World Scientific (2013)

  19. Matar, M.M.: Existence and uniqueness of solutions to fractional semilinear mixed Volterra–Fredholm integro-differential equations with nonlocal conditions. Electron. J. Differ. Eq. 2009(155), 1–7 (2009)

    Google Scholar 

  20. Momani, S., Noor, M.A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182(1), 754–760 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Momani, S., Odibat, Z., Alawneh, A.: Variational iteration method for solving the space-and time-fractional KdV equation. Numer. Methods Part. Differ. Equ. 24(1), 262–271 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nemati, S., Lima, P.M.: Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions. Appl. Math. Comput. 327, 79–92 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Panda, A., Santra, S., Mohapatra, J.: Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01613-x

    Article  MATH  Google Scholar 

  24. Panda, A., Mohapatra, J., Amirali, I.: A second order post-processing technique for singularly perturbed Volterra integro-differential equations. Mediterr. J. Math. (2021). https://doi.org/10.1007/s00009-021-01873-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Vol. 198, Mathematics in Science and Engineering. Academic Press, San Diego (1999)

  26. Rach, R.C.: A new definition of the Adomian polynomials. Kybernetes 6, 66 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Rahimkhani, P., Ordokhani, Y.: Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2019.112365

    Article  MathSciNet  MATH  Google Scholar 

  28. Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1–6 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Renardy, M.: Mathematical analysis of viscoelastic ows. Annu. Rev. Fluid Mech. 21(1), 21–34 (1989)

    Article  Google Scholar 

  30. Roohollahi, A., Ghazanfari, B., Akhavan, S.: Numerical solution of the mixed Volterra–Fredholm integro-differential multi-term equations of fractional order. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.112828

    Article  MathSciNet  MATH  Google Scholar 

  31. Santra, S., Mohapatra, J.: Analysis of the L1 scheme for a time fractional parabolic–elliptic problem involving weak singularity. Math. Methods Appl. Sci. 44(2), 1529–1541 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Santra, S., Mohapatra, J.: Numerical analysis of Volterra integro-differential equations with Caputo fractional derivative. Iran. J. Sci. Technol. Trans. A Sci. 45(5), 1815–1824 (2021)

    Article  MathSciNet  Google Scholar 

  33. Santra, S., Mohapatra, J.: A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. J. Comput. Appl. Math. (2021). https://doi.org/10.1016/j.cam.2021.113746

    Article  MATH  Google Scholar 

  34. Schumer, R., Benson, D., Meerschaert, M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 13 (2003)

    Article  Google Scholar 

  35. Soczkiewicz, E.: Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust. 23, 397–404 (2002)

    Google Scholar 

  36. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

  37. Wang, Q.: Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method. Appl. Math. Comput. 182(2), 1048–1055 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Zhao, Z., Zheng, Y.: Leapfrog/finite element method for fractional diffusion equation. Sci. World J. (2014). https://doi.org/10.1155/2014/982413

    Article  Google Scholar 

  39. Zhou, J., Xu, D.: Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. Comput. Math. Appl. 79(2), 244–255 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jugal Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, S., Panda, A. & Mohapatra, J. A novel approach for solving multi-term time fractional Volterra–Fredholm partial integro-differential equations. J. Appl. Math. Comput. 68, 3545–3563 (2022). https://doi.org/10.1007/s12190-021-01675-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01675-x

Keywords

Mathematics Subject Classification

Navigation