Skip to main content
Log in

Optimality and duality for second-order interval-valued variational problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The paper studies the second-order interval-valued variational problem under \(\eta \)-bonvexity assumptions and proves the necessary optimality conditions. We investigate the functional which is \(\eta \)-bonvex but not invex. Further, we prove the duality theorems i.e. the weak and strong duality theorem to relate the values of the primal problem and dual problem. To validate the credibility of the weak duality theorem, we formulate an example of a second-order interval-valued variational problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Skelboe, S.: Computation of rational interval functions. BIT Numer. Math. 14(1), 87–95 (1974)

    Article  MathSciNet  Google Scholar 

  2. Ichida, K.: Constrained optimization using interval analysis. Comput. Ind. Eng. 31(3–4), 933–937 (1996)

    Article  Google Scholar 

  3. Walster, G.W., Hansen, E.: Using pillow functions to efficiently compute crude range tests. Numer. Algorithms 37(1–4), 401–415 (2004)

    Article  MathSciNet  Google Scholar 

  4. Csallner, A.E.: Lipschitz continuity and the termination of interval methods for global optimization. Comput. Math. Appl. 42(8–9), 1035–1042 (2001)

    Article  MathSciNet  Google Scholar 

  5. Casado, L.G., Martínez, J.A., García, I.: Experiments with a new selection criterion in a fast interval optimization algorithm. J. Glob. Optim. 19(3), 247–264 (2001)

    Article  MathSciNet  Google Scholar 

  6. Martínez, J.A., Casado, L.G., García, I., Sergeyev, Y.D., Tóth, B.: On an efficient use of gradient information for accelerating interval global optimization algorithms. Numer. Algorithms 37(1–4), 61–69 (2004)

    Article  MathSciNet  Google Scholar 

  7. Suprajitno, H., Mohd, I.B.: Linear programming with interval arithmetic. Int. J. Contemp. Math. Sci. 5(7), 323–332 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Hladík, M.: Optimal value range in interval linear programming. Fuzzy Optim. Decis. Mak. 8(3), 283–294 (2009)

    Article  MathSciNet  Google Scholar 

  9. Gabrel, V., Murat, C., Remli, N.: Linear programming with interval right hand sides. Int. Trans. Oper. Res. 17(3), 397–408 (2010)

    Article  MathSciNet  Google Scholar 

  10. Arjmandzadeh, Z., Safi, M., Nazemi, A.: A new neural network model for solving random interval linear programming problems. Neural Netw. 89, 11–18 (2017)

    Article  Google Scholar 

  11. Wu, H.C.: The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur. J. Oper. Res. 176(1), 46–59 (2007)

    Article  MathSciNet  Google Scholar 

  12. Wu, H.C.: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338(1), 299–316 (2008)

    Article  MathSciNet  Google Scholar 

  13. Wu, H.C.: Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138(3), 497–509 (2008)

    Article  MathSciNet  Google Scholar 

  14. Chalco-Cano, Y., Lodwick, W.A., Rufian-Lizan, A.: Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy. Optim. Decis. Mak. 12(3), 305–322 (2013)

    Article  MathSciNet  Google Scholar 

  15. Zhang, J., Liu, S., Li, L., Feng, Q.: The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8(2), 607–631 (2014)

    Article  MathSciNet  Google Scholar 

  16. Zhang, J., Zheng, Q., Zhou, C., Ma, X., Li, L.: On interval-valued pseudolinear functions and interval-valued pseudolinear optimization problems. J. Funct. Spaces. Article ID 610848 (2015)

  17. Zhang, J.: Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems. J. Appl. Math. Article ID 641345 (2013)

  18. Zhang, J., Zheng, Q., Ma, X., Li, L.: Relationships between interval-valued vector optimization problems and vector variational inequalities. Fuzzy. Optim. Decis. Mak. 15(1), 33–55 (2016)

    Article  MathSciNet  Google Scholar 

  19. Li, L., Liu, S., Zhang, J.: Univex interval-valued mapping with differentiability and its application in nonlinear programming. J. Appl. Math. 383692 (2013)

  20. Li, L., Liu, S., Zhang, J.: On interval-valued invex mappings and optimality conditions for interval-valued optimization problems. J. Inequal. Appl. Article Number 179 (2015)

  21. Osuna-Gómez, R., Chalco-Cano, Y., Hernández-Jiménez, B., Ruiz-Garzón, G.: Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 321, 136–146 (2015)

    Article  MathSciNet  Google Scholar 

  22. Luu, D.V., Mai, T.T.: Optimality and duality in constrained interval-valued optimization. 4OR 16(3), 311–337 (2018)

    Article  MathSciNet  Google Scholar 

  23. Bentkowska, U.: Interval-Valued Methods in Classifications and Decisions. Studies in Fuzziness and Soft Computing, vol. 378. Springer, Cham (2020)

    Book  Google Scholar 

  24. Tung, L.T.: Karush–Kuhn–Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions. J. Appl. Math. Comput. 62, 67–91 (2020)

    Article  MathSciNet  Google Scholar 

  25. Troutman, J.L.: Variational Calculus and Optimal Control, Optimization with Elementary Convexity. Springer, New York (1996)

    Book  Google Scholar 

  26. Esmaelzadeh, R.: Low-thrust orbit transfer optimization using a combined method. Int. J. Comput. Appl. 89(4), 20–24 (2014)

    Google Scholar 

  27. Koopialipoor, M., Noorbakhsh, A.: Applications of artificial intelligence techniques in optimizing drilling. In: Emerging Trends in Mechatronics, pp. 89–118. IntechOpen, London (2020)

  28. Hanson, M.A.: Bounds for functionally convex optimal control problems. J. Math. Anal. Appl. 8(1), 84–89 (1964)

    Article  MathSciNet  Google Scholar 

  29. Mond, B., Hanson, M.A.: Duality for variational problems. J. Math. Anal. Appl. 18(2), 355–364 (1967)

    Article  MathSciNet  Google Scholar 

  30. Kailey, N., Gupta, S.K.: Duality for a class of symmetric nondifferentiable multiobjective fractional variational problems with generalized (F, \(\alpha \), \(\rho \), d)-convexity. Math. Comput. Model. 57(5–6), 1453–1465 (2013)

    Article  MathSciNet  Google Scholar 

  31. Mond, B., Hanson, M.A.: Symmetric duality for variational problems. J. Math. Anal. Appl. 23(1), 161–172 (1968)

    Article  MathSciNet  Google Scholar 

  32. Mishra, S.K., Mukherjee, R.N.: Duality for multiobjective fractional variational problems. J. Math. Anal. Appl. 186(3), 711–725 (1994)

    Article  MathSciNet  Google Scholar 

  33. Jayswal, A., Jha, S.: Second order symmetric duality in fractional variational problems over cone constraints. Yugosl. J. Oper. Res. 28(1), 39–57 (2018)

    Article  MathSciNet  Google Scholar 

  34. Sachdev, G., Verma, K., Gulati, T.R.: Second-order symmetric duality in multiobjective variational problems. Yugosl. J. Oper. Res. 29(3), 295–308 (2019)

    Article  MathSciNet  Google Scholar 

  35. Ahmad, I., Jayswal, A., Al-Homidan, S., Banerjee, J.: Sufficiency and duality in interval-valued variational programming. Neural Comput. Appl. 31(8), 4423–4433 (2019)

    Article  Google Scholar 

  36. Ishibuch, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48(2), 219–225 (1990)

    Article  Google Scholar 

  37. Moore, R.E.: Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (1979)

    Book  Google Scholar 

  38. Chandra, S., Craven, B.D., Husain, I.: A class of nondifferentiable continuous programming problems. J. Math. Anal. Appl. 107(1), 122–131 (1985)

    Article  MathSciNet  Google Scholar 

  39. Bector, C.R., Chandra, S., Husain, I.: Generalized concavity and duality in continuous programming. Ufilifas Math. 25, 171–190 (1984)

    MathSciNet  MATH  Google Scholar 

  40. Bector, C.R., Husain, I.: Duality for multiobjective variational problems. J. Math. Anal. Appl. 166(1), 214–229 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the referees for their valuable comments and suggestions, which significantly improved the paper’s readability. The authors acknowledge DST-FIST (Govt. of India) for the grant SR/FST/MS-1/2017/13 to support this research work. Also, the second author gratefully acknowledges technical support from the Seed Money Project TU/DORSP/57/7293 of TIET, Patiala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kailey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhingra, V., Kailey, N. Optimality and duality for second-order interval-valued variational problems. J. Appl. Math. Comput. 68, 3147–3162 (2022). https://doi.org/10.1007/s12190-021-01657-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01657-z

Keywords

Mathematics Subject Classification

Navigation