Skip to main content
Log in

A new Tau-collocation method with fractional basis for solving weakly singular delay Volterra integro-differential equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to introduce a new formulation of the Tau-collocation method for solving a class of nonlinear weakly singular delay Volterra integro-differential equations based on fractional Müntz Jacobi polynomials. So the paper consists of two main parts: studying the regularity of solution and introducing a simple structure and efficient numerical method. The method generates approximate solution with fractional power terms having the same behavior of the exact solution of the given problem. The convergence analysis of the method is also investigated in \(L^{2}\)-norm. Some illustrative examples are given to confirm the theoretical results and the accuracy of the approximate solution. The paper is closed by providing real application of the method to some physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbas, S., Agarwal, R.P., Benchohra, M.: Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3, 597–604 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Al-Humedi, H.O., Abdul-hasan, A.S.: The reproducing Kernel Hilbert space method for solving system of linear weakly singular Volterra integral equations. J. Adv. Math. 15, 8070–8080 (2018)

    Google Scholar 

  3. Benchohra, M.: Perturbed partial functional fractional order differential equations with infinite delay. J. Adv. Res. Dyn. Control Syst. 5(2), 1–15 (2013)

    MathSciNet  Google Scholar 

  4. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Brunner, H.: The approximation solution of initial value problem for general Volterra integro differential equations. Computing 40, 125–137 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Brunner, H., Qiumei, H., Hehu, X.: Discontinuous Galerkin methods for delay differential equation of pantograph type. SIAM J. Numer. Anal. 48, 1944–1967 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  8. Brunner, H.: Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays. Front. Math. China 4, 3 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Brunner, H., Pedas, A., Vainikko, G.: The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations. Math. Comput. 68, 1079–1095 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39(3), 957–982 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Conte, D., Shahmorad, S., Talaei, Y.: New fractional Lanczos vector polynomials and their application to system of Abel–Volterra integral equations and fractional differential equations. J. Comput. Appl. Math. 366, 112409 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Diethelm, K.: The Analysis of Fractional Differential Equations. Lectures Notes in Mathematics. Springer, Berlin (2010)

    MATH  Google Scholar 

  13. Derfel, G., Iserles, A.: The pantograph equation in the complex plane. J. Math. Anal. Appl. 213, 117–132 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Deng, G., Yang, Y., Tohidi, E.: High accurate pseudo-spectral Galerkin scheme for pantograph type Volterra integro-differential equations with singular kernels. Appl. Math. Comput. 396, 125866 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Dastjerdi, H.L., Ahmadabadi, M.N.: Moving least squares collocation method for Volterra integral equations with proportional delay. Int. J. Comput. Math. 97(12), 2335–2347 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Davaeifar, S., Rashidinia, J.: Solution of a system of delay differential equations of multi-pantograph type. J. Taib. Univ. Sci. 11, 1141–1157 (2017)

    Google Scholar 

  17. Dehghan, M., Shakeri, F.: The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 78, 453–460 (2008)

    MATH  Google Scholar 

  18. EL-Daou, M.K., Ortiz, E.L.: A recursive formulation of collocation in terms of canonical polynomials. Computing 52, 177–202 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  20. Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Huang, Q., Xie, H., Brunner, A.: Superconvergence of discontinuous Galerkin solutions for delay differential equations of pantograph type. J. Comput. Appl. 33, 2664–2684 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Izadi, M., Srivastava, H.M.: An efficient approximation technique applied to a nonlinear Lane–Emden pantograph delay differential model. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2021.126123

    Article  MATH  Google Scholar 

  23. Isik, O.R., Guney, Z., Sezer, M.: Bernstein series solutions of pantograph equations using polynomial interpolation. J. Differ. Equ. Appl. 18(3), 35–374 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Ishtiaq, A., Brunner, H., Tang, T.: A spectral method for pantograph-type delay differential equations and its convergence analysis. J. Comput. Math. 27, 254–265 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Ishtiaq, A., Brunner, H., Tang, T.: Spectral method for pantograph-type differential and integral equations with multiple delays. Front. Math. China 4, 49–61 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Lanczos, C.: Applied Analysis. Prentice-Hall, Englewood Cliffs (1956)

    MATH  Google Scholar 

  27. Liu, M., Li, D.: Application of the decomposition method of Adomian for solving the pantograph equation of order m. Z. Natur. Sch. 65, 453–460 (2010)

    Google Scholar 

  28. Liu., K.M.: A new formulation of the Tau-collocation method for the numerical solution of the differential equations. Res. Rep. 0286. Hong Kong Polytechnic (The Hong-Kong Polytechnic University) (1986)

  29. Liu, K.M.: Numerical solution of differential eigenvalue problems with variable coefficients with the Tau-collocation method. Math. Comput. Model. 11, 72–675 (1988)

    MathSciNet  Google Scholar 

  30. Muroya, Y., Ishiwata, E., Brunner, H.: On the attainable order of collocation methods for pantograph integro-differential equations. J. Comput. Appl. 152, 347–366 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Ortiz, E.L.: The Tau method. SIAM J. Numer. Anal. 6, 480–492 (1969)

    MathSciNet  MATH  Google Scholar 

  32. Ortiz, E.L., Samara, L.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27, 15–25 (1981)

    MathSciNet  MATH  Google Scholar 

  33. Ockendon, J.R., Tayler, A.B.: The dynamic of a current collection system for an electric locomotive. Proc. R. Soc. Lond. Ser. A 322, 447–468 (1971)

    Google Scholar 

  34. Polyanin, Andrei D., Sorokin, Vsevolod G.: Nonlinear pantograph-type diffusion PDEs: exact solutions and the principle of analogy. Mathematics 9(5), 511 (2021)

    Google Scholar 

  35. Ruan, S.: Delay Differential Equations and Applications. Springer, Berlin (2006)

    Google Scholar 

  36. Singh, J., Rashidi, M.M., Kumar, D., Swroop, R.: A fractional model of a dynamical Brusselator reaction–diffusion system arising in triple collision and enzymatic reactions. Nonlinear Eng. 5(4), 277–285 (2016)

    Google Scholar 

  37. Singh, B.K., Kumar, P.: Extended fractional reduced differential transform for solving fractional partial differential equations with proportional delay. Int. J. Appl. Comput. Math. 3, 631–649 (2017)

    MathSciNet  Google Scholar 

  38. Sarwar, S., Rashidi, M.M.: Approximate solution of two-term fractional-order diffusion, wave-diffusion, and telegraph models arising in mathematical physics using optimal homotopy asymptotic method. Waves Random Complex Media 26(3), 365–382 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Shahmorad, S.: Numerical solution of the general form linear Fredholm–Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 167(2), 1418–1429 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Sedaghat, S., Ordokhani, Y., Dehghan, M.: Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 17, 4815–4830 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Shi, X., Chen, Y.: Spectral-collocation method for Volterra delay integro-differential equations with weakly singular kernels. Adv. Appl. Math. Mech. 8, 648–669 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Shakeri, F., Dehghan, M.: Application of the decomposition method of Adomian for solving the pantograph equation of order m. Z. Natur. Sch. 65, 453–460 (2010)

    Google Scholar 

  43. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, Springer Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)

    Google Scholar 

  44. Tari, A., Rahimi, M.Y., Shahmorad, S., Talati, F.: Development of the Tau method for the numerical solution of two-dimensional linear Volterra integro-differential equations. Comput. Methods Appl. Math. 9(4), 421–435 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Tohidi, E., Bhrawy, A.H., Erfani, K.: A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 37, 4283–4294 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Talaei, Y., Shahmorad, S., Mokhtary, P.: A new recursive formulation of the Tau method for solving linear Abel–Volterra integral equations and its application to fractional differential equations. Calcolo 56(50), 1–29 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Talaei, Y.: Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations. J. Appl. Math. Comput. 60, 201–222 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    MATH  Google Scholar 

  49. Wai, H.W.: Numerical Solution of Linear and Nonlinear Ordinary Differential Equations with the Tau-Collocation Method, Thesis (M. Phil.). City University of Hong Kong (2004)

  50. Yang, C.: Modified Chebyshev collocation method for pantograph-type differential equations. Appl. Numer. Math. 134, 132–144 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Zhao, J., Cao, Y., Xu, Y.: Sinc numerical solution for pantograph Volterra delay-integro-differential equation. Int. J. Comput. Math. 94, 853–865 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, R., Zhu, B., Xie, H.: Spectral methods for weakly singular Volterra integral equations with pantograph delays. Front. Math. China 8(2), 281–299 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shahmorad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizipour, G., Shahmorad, S. A new Tau-collocation method with fractional basis for solving weakly singular delay Volterra integro-differential equations. J. Appl. Math. Comput. 68, 2435–2469 (2022). https://doi.org/10.1007/s12190-021-01626-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01626-6

Keywords

Mathematics Subject Classification

Navigation