Skip to main content
Log in

Exponential-sum-approximation technique for variable-order time-fractional diffusion equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the variable-order (VO) time-fractional diffusion equations. For a VO function \(\alpha (t)\in (0,1)\), we develop an exponential-sum-approximation (ESA) technique to approach the VO Caputo fractional derivative. The ESA technique keeps both the quadrature exponents and the number of exponentials in the summation unchanged at different time level. Approximating parameters are properly selected to achieve the efficient accuracy. Compared with the general direct method, the proposed method reduces the storage requirement from \({\mathcal {O}}(n)\) to \({\mathcal {O}}(\log ^2 n)\) and the computational cost from \({\mathcal {O}}(n^2)\) to \(\mathcal {O}(n\log ^2 n)\), respectively, with n being the number of the time levels. When this fast algorithm is exploited to construct a fast ESA scheme for the VO time-fractional diffusion equations, the computational complexity of the proposed scheme is only of \({\mathcal {O}}(mn\log ^2 n)\) with \({\mathcal {O}}(m\log ^2n)\) storage requirement, where m denotes the number of spatial grid points. Theoretically, the unconditional stability and error analysis of the fast ESA scheme are given. The effectiveness of the proposed algorithm is verified by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  3. Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28, 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A Math. Gen. 38, 679–684 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation. Nonlin. Dyn. 56, 145–157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, R., Alikhanov, A.A., Sun, Z.Z.: Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations. Comput. Math. with Appl. 79, 2952–2972 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, Z.J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. 57, 37–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, Z.J., Reutskiy, S., Sun, H.G., Ma, J., Khan, M.A.: A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl. Math. Lett. 94, 105–111 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, H.F., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ingman, D., Suzdalnitsky, J.: Control of damping oscilations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193, 5585–5595 (2004)

    Article  MATH  Google Scholar 

  14. Jia, Y.T., Xu, M.Q., Lin, Y.Z.: A numerical solution for variable order fractional functional differential equation. Appl. Math. Lett. 64, 125–130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ke, R., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  18. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform \(L1\) formula for linear reaction-subdiffusion equations. SIAM J. Numer. Aanl. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F.W., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. López-Fernándes, M., Lubich, C., Schadle, A.: Adaptive, fast and oblivious convolution in evolution with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, X., Pang, H.K., Sun, H.W.: Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer. Lin. Alg. Appl. 22, 866–882 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, X., Pang, H.K., Sun, H.W., Vong, S.W.: Approximation inversion method for time-fractional subdiffusion equations. Numer. Lin. Alg. Appl. 25, (2018)

  25. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24, 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A 287, 468–481 (2000)

    Article  MATH  Google Scholar 

  27. Obembe, A.D., Hossain, M.E., Abu-Khamsin, S.A.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. 152, 391–405 (2017)

    Article  Google Scholar 

  28. Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  29. Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control 14, 1659–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  31. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  32. Ramirez, L. E. S., Coimbra, C. F. M.: On the selection and meaning of variable order operators for dynamic modeling, Int. J. Differ. Equ., Article ID 846107, p. 16 (2010)

  33. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schädle, A., López-Fernándes, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shen, S.J., Liu, F.W., Chen, J.H., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. App. Math. Comput. 218, 10861–10870 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sokolov, I.M., Klafter, J.: From diffusion to anomalous diffusion: a century after einsteins brownian motion. Chaos 15, 1–7 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14, 378–389 (2005)

    Article  MATH  Google Scholar 

  38. Sun, Z.Z.: Numerical methods of partial differential equations. Science Press, Beijing (2005)

    Google Scholar 

  39. Sun, H.G., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  41. Sun, H.G., Chen, W., Li, C.P., Chen, Y.Q.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcation Chaos 22, 1250085 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, H.G., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)

    Article  Google Scholar 

  43. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhuang, P., Liu, F.W., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported in part by research grants of the Science and Technology Development Fund, Macau SAR (file no. 0118/2018/A3), and MYRG2018-00015-FST from University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JL., Fang, ZW. & Sun, HW. Exponential-sum-approximation technique for variable-order time-fractional diffusion equations. J. Appl. Math. Comput. 68, 323–347 (2022). https://doi.org/10.1007/s12190-021-01528-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01528-7

Keywords

Mathematics Subject Classification

Navigation