Skip to main content
Log in

EBDF-type methods based on the linear barycentric rational interpolants for stiff IVPs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Linear barycentric rational interpolants, instead of customary polynomial interpolants, have been recently used to design the efficient numerical integrators for ODEs. In this way, the BDF-type methods based on these interpolants have been introduced as a general class of the methods in this type with better accuracy and stability properties. In this paper, we introduce an extension of them equipped to super-future point technique. The order of convergence and stability of the proposed methods are discussed and confirmed by some given numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdi, A., Berrut, J.P., Hosseini, S.A.: Explicit methods based on barycentric rational interpolants for solving non-stiff Volterra integral equations. (submitted)

  2. Abdi, A., Berrut, J.P., Hosseini, S.A.: The linear barycentric rational method for a class of delay Volterra integro-differential equations. J. Sci. Comput. 75, 1757–1775 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdi, A., Hojjati, G.: Barycentric rational interpolants based second derivative backward differentiation formulae for ODEs. Numer. Algorithms 85, 867–886 (2020)

  4. Abdi, A., Hosseini, S.A.: The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations. SIAM J. Sci. Comput. 40, A1936–A1960 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdi, A., Hosseini, S.A., Podhaisky, H.: Adaptive linear barycentric rational finite differences method for stiff ODEs. J. Comput. Appl. Math. 357, 204–214 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abdi, A., Hosseini, S.A., Podhaisky, H.: Numerical methods based on the Floater–Hormann interpolants for stiff VIEs. Numer. Algorithm (to appear)

  7. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York (1989)

    MATH  Google Scholar 

  8. Berrut, J.P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berrut, J.P., Floater, M.S., Klein, G.: Convergence rates of derivatives of a family of barycentric rational interpolants. Appl. Numer. Math. 61, 989–1000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berrut, J.P., Hosseini, S.A., Klein, G.: The linear barycentric rational quadrature method for Volterra integral equations. SIAM J. Sci. Comput. 36, A105–A123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berrut, J.P., Trefethen, L.N.: Barycentric lagrange interpolation. SIAM J. Numer. Anal. 46, 501–517 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Butcher, J.C.: A modified multistep method for the numerical integration of ordinary differential equations. J. ACM 12, 124–135 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2016)

    Book  MATH  Google Scholar 

  14. Cash, J.R.: On the integration of stiff systems of ODEs using extended backward differentiation formulae. Numer. Math. 34, 235–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18, 21–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cash, J.R.: The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae. Comput. Math. Appl. 9, 645–657 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Natl. Acad. Sci. 38, 235–243 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Floater, M.S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fredebeul, C.: A-BDF: a generalization of the backward differentiation formulae. SIAM J. Numer. Anal. 35, 1917–1938 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gear, C.W.: Hybrid methods for initial value problems in ordinary differential equations. SIAM J. Numer. Anal. 2, 69–86 (1965)

    MathSciNet  MATH  Google Scholar 

  24. Gragg, W.B., Stetter, H.J.: Generalized multistep predictor-corrector methods. J. ACM 11, 188–209 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (2010)

    MATH  Google Scholar 

  26. Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: A-EBDF: an adaptive method for numerical solution of stiff systems of ODEs. Math. Comput. Simul. 66, 33–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model. 30, 466–476 (2006)

    Article  MATH  Google Scholar 

  28. Hosseini, S.A., Abdi, A.: On the numerical stability of the linear barycentric rational quadrature method for Volterra integral equations. Appl. Numer. Math. 100, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klein, G.: Applications of Linear Barycentric Rational Interpolation. PhD thesis, University of Fribourg (2012)

  30. Klein, G., Berrut, J.P.: Linear rational finite differences from derivatives of barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeelzadeh, Z., Abdi, A. & Hojjati, G. EBDF-type methods based on the linear barycentric rational interpolants for stiff IVPs. J. Appl. Math. Comput. 66, 835–851 (2021). https://doi.org/10.1007/s12190-020-01464-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01464-y

Keywords

Mathematics Subject Classification

Navigation