Skip to main content
Log in

Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, two linearized schemes for time fractional nonlinear wave equations (TFNWEs) with the space fourth-order derivative are proposed and analyzed. To reduce the smoothness requirement in time, the considered TFNWEs are equivalently transformed into their partial integro-differential forms by the Riemann–Liouville integral. Then, the first scheme is constructed by using piecewise rectangular formulas in time and the fourth-order approximation in space. And, this scheme can be fast evaluated by the sum-of-exponentials technique. The second scheme is developed by using the Crank–Nicolson technique combined with the second-order convolution quadrature formula. By the energy method, the convergence and unconditional stability of the proposed schemes are proved rigorously. Finally, numerical experiments are given to support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput. Struct. 79, 1497–1501 (2001)

    Google Scholar 

  2. Arshad, S., Huang, J.F., Khaliq, A.Q.M., Tang, Y.F.: Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative. J. Comput. Phys. 350, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Arshed, S.: Quintic B-spline method for time-fractional superdiffusion fourth-order differential equation. Math. Sci. 11, 17–26 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Aziz, I., Siraj-ul-Islam, Asif, M.: Haar wavelet collocation method for three-dimensional elliptic partial differential equations. Comput. Math. Appl. 73, 2023–2034 (2017)

  5. Siraj-ul-Islam, Aziz, I., Al-Fhaid, A.S., Shah, A.: A numerical assessment of parabolic partial differential equations using Haar and Legendre wavelets. Appl. Math. Model. 37, 9455–9481 (2013)

  6. Aziz, I., Khan, I.: Numerical solution of diffusion and reaction-diffusion partial integro-differential equations. Int. J. Comput. Methods 15, 1850047 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Chen, H., Lü, S.J., Chen, W.P.: A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients. J. Comput. Appl. Mathods 330, 380–397 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Chen, H.B., Xu, D., Peng, Y.L.: A second order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation. Appl. Math. Model. 41, 54–67 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Cui, M.R.: Compact difference scheme for time-fractional fourth-order equation with first Dirichlet boundary condition. East Asian J. Appl. Math. 9, 45–66 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Anal. 40, 241–266 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Fishelov, D., Ben-Artzi, M., Croisille, J.P.: Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equations. J. Sci. Comput. 53, 55–79 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Liu, R.: A compact difference scheme for fourth-order temporal multi-term fractional wave equations and maximum error estimates. East Asian J. Appl. Math. 9, 703–722 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Gu, X.M., Huang, T.Z., Ji, C.C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72, 957–985 (2017)

    MathSciNet  MATH  Google Scholar 

  14. He, H.Y., Liang, K.J., Yin, B.L.: A numerical method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation. Int. J. Model. Simul. Sci. Comput. 10, 1941005 (2019)

    Google Scholar 

  15. Herrmann, R.: Fractional Calculus: An Introduction for Physicists, 2nd edn. World Scientific, Singapore (2014)

    MATH  Google Scholar 

  16. Hu, X.L., Zhang, L.M.: On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 218, 5019–5234 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Hu, X.L., Zhang, L.M.: A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system. Int. J. Comput. Math. 91, 2215–2231 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Huang, J.F., Arshad, S., Jiao, Y.D., Tang, Y.F.: Convolution quadrature methods for time-space fractional nonlinear diffusion-wave equations. East Asian J. Appl. Math. 9, 538–557 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Huang, J.F., Zhao, Y., Arshad, S., Li, K.Y., Tang, Y.F.: Alternating direction implicit schemes for the two-directional time fractional nonlinear super-diffusion equations. J. Comput. Math. 37, 297–315 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Huang, J.F., Yang, D.D., Jay, L.O.: Efficient methods for nonlinear time fractional diffusion-wave equations and their fast implementations. Numer. Algorithm (2020). https://doi.org/10.1007/s11075-019-00817-4

    Article  MathSciNet  MATH  Google Scholar 

  21. Jafari, H., Dehghan, M., Sayevand, K.: Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Commun. Comput. Phys. 24, 1115–1126 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Ji, C.C., Sun, Z.Z., Hao, Z.P.: Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J. Sci. Comput. 66, 1148–1174 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    MathSciNet  Google Scholar 

  24. Jiang, X., Yu, X.M.: Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media. Int. J. Non-Linear Mech. 41, 156–165 (2006)

    Google Scholar 

  25. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  26. Li, C.P., Zeng, F.Z.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, New York (2015)

    MATH  Google Scholar 

  27. Li, D.F., Liao, H.L., Sun, W.W., Wang, J.L., Zhang, J.W.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

    MathSciNet  Google Scholar 

  28. Li, X.H., Wong, P.J.Y.: A non-polynomial numerical scheme for fourth-order fractional diffusion-wave model. Appl. Math. Comput. 331, 80–95 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Li, X.H., Wong, P.J.Y.: An efficient numerical treatment of fourth-order fractional diffusion-wave problems. Numer. Methods Partial Differ. Equ. 34, 1324–1347 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Lubich, Ch.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988)

    MathSciNet  MATH  Google Scholar 

  33. Martin, S., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Ran, M.H., Zhang, C.J.: New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl. Numer. Math. 129, 58–70 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Sandev, T., Tomovshi, Z.: Fractional Equations and Models: Theory and Applications. Springer, Berlin (2019)

    Google Scholar 

  36. Shallal, M.A., Jabbar, H.N., Ali, K.K.: Analytic solution for the space-time fractional Klein–Gordon and coupled conformable Boussinesq equations. Results Phys. 8, 372–378 (2018)

    Google Scholar 

  37. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Wang, H., Zheng, X.C.: Analysis and numerical solution of a nonlinear variable-order fractional differential equation. Adv. Comput. Math. 45, 2647–2675 (2019)

    MathSciNet  Google Scholar 

  39. Wang, P.D., Huang, C.M.: An energy conservative difference scheme for the nonlinear fractional Schröinger equations. J. Comput. Phys. 293, 238–251 (2015)

    MathSciNet  Google Scholar 

  40. Wang, Z.B., Vong, S.W., Lei, S.L.: Finite difference schemes for two-dimensional time-space fractional differential equations. Int. J. Comput. Math. 93, 578–595 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Yao, Z.S., Wang, Z.B.: A compact difference scheme for fourth-order fractional sub-diffusion equations with Neumann boundary conditions. J. Appl. Anal. Comput. 8, 1159–1169 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Yuste, S.B., Lindenberg, K.: Subdiffusion-limited reactions. Chem. Phys. 284, 169–180 (2002)

    Google Scholar 

  43. Zhang, P., Pu, H.: A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation. Numer. Algorithm 76, 573–598 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)

    Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant Nos. 11701502 and 11871065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Qiao, Z., Zhang, J. et al. Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative. J. Appl. Math. Comput. 66, 561–579 (2021). https://doi.org/10.1007/s12190-020-01449-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01449-x

Keywords

Mathematics Subject Classification

Navigation