Skip to main content
Log in

On the numerical solution of integral equations of the second kind over infinite intervals

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we discuss the numerical solution of a class of linear integral equations of the second kind over an infinite interval. The method of solution is based on the reduction of the problem to a finite interval by means of a suitable family of mappings so that the resulting singular equation can be accurately solved using spectral collocation at the Jacobi-Gauss points. Several selected numerical examples are presented and discussed to illustrate the application and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atkinson, K.E., Shampine, L.F.: Algorithm 876: Solving Fredholm integral equations of the second kind in Matlab. ACM Trans. Math. Softw. 34, 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aziz, I., Siraj-ul-Islam: New algorithms for numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J. Comput. Appl. Math. 239, 333–345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aziz, I., Siraj-ul-Islam, Khan F: A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. J. Comput. Appl. Math. 272, 70–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Siraj-ul-Islam, Aziz, I., Fayyaz M: A new approach for numerical solution of integro-differential equations via Haar wavelets. Int. J. Comput. Math. 90, 1971–1989 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Siraj-ul-Islam, Aziz, I., Al-Fhaid A.S: An improved method based on Haar wavelets for numerical solution of nonlinear and integro-differential equations of first and higher orders. J. Comput. Appl. Math. 260, 449–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Driscoll, T.A.: Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations. J. Comput. Phys. 229, 5980–5998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wazwaz, A.M., Rach, R., Duan, J.S.: The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations. Central Eur. J. Eng. 3, 669–678 (2013)

    Google Scholar 

  8. Xuan, Y., Lin, F.R.: Numerical methods based on rational variable substitution for Wiener-Hopf equations of the second kind. J. Comput. Appl. Math. 236, 3528–3539 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benyoussef, S., Rahmoune, A.: Efficient spectral-collocation methods for a class of linear Fredholm integro-differential equations on the half-line. J. Comput. Appl. Math. 377, 112894 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frammartino, C., Laurita, C., Mastroianni, G.: On the numerical solution of Fredholm integral equations on unbounded intervals. J. Comput. Appl. Math. 158, 355–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Monegato, G., Scuderi, L.: Quadrature rules for unbounded intervals and their application to integral equations. In: Gautschi, W., Mastroianni, G., Rassias, T. (eds.) Approximation and Computation. Springer Optim. Appl., vol. 42. Springer, New York (2010)

    Chapter  MATH  Google Scholar 

  12. Nahid, N., Nelakanti, G.: Convergence analysis of Galerkin and multi-Galerkin methods for linear integral equations on half-line using Laguerre polynomials. J. Comput. Appl. Math. 38, 182 (2019). https://doi.org/10.1007/s40314-019-0967-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Rahmoune, A.: Spectral collocation method for solving Fredholm integral equations onthe half-line. Appl. Math. Comput. 219, 325–341 (2013)

    MathSciNet  Google Scholar 

  14. Rahmoune, A., Guechi, A.: Sinc-Nyström methods for Fredholm integral equations of the second kind over infinite intervals. Appl. Numer. Math. 157, 579–589 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyd, J.P.: Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69, 112–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc., Mineola, NY (2001)

    MATH  Google Scholar 

  17. Boyd, J.P.: Rational Chebyshev series for the Thomas-Fermi function: endpoint singularities and spectral methods. J. Comput. Appl. Math. 244, 90–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, J., Wang, L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5(2–4), 195–241 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  20. Kress, R.: Linear Integral Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  21. Heil, C.: Extra Chapter 8, Integral Operators, for Metrics, Norms, Inner Products, and Operator Theory. http://people.math.gatech.edu/~heil/metricnote/chap8.pdf. Accessed 3 Aug 2020

  22. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    MATH  Google Scholar 

  23. Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M., Baleanu, D.: Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations. Nonlinear Anal. Model. Control 24, 332–352 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mastroianni, G., Occorsio, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals. J. Comput. Appl. Math. 134, 325–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Government Printing Office, Washington, 10th printing, with corrections (1972)

  26. Atkinson, A.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal. 6, 375–397 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stallybrass, M.P.: A Pressurized crack in the form of a cross. Q. J. Mech. Appl. Math. 23(1), 35–48 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chandler, G.A., Graham, I.G.: The convergence of Nyström methods for Wiener-Hopf equations. Numer. Math. 52, 345–364 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, S.Y.: Numerical solution of integral equations with nonsmooth kernel and applications. PhD thesis, University of Connecticut (2000)

  30. Sloan, I.H.: Quadrature methods for integral equations of the second kind over infinite intervals. Math. Comput. 36, 511–523 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azedine Rahmoune.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmoune, A. On the numerical solution of integral equations of the second kind over infinite intervals. J. Appl. Math. Comput. 66, 129–148 (2021). https://doi.org/10.1007/s12190-020-01428-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01428-2

Keywords

Navigation