Skip to main content

Advertisement

Log in

Reaction-diffusion modeling of the spread of spruce budworm in boreal ecosystem

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Boreal forest in Canada has two main recurrent disturbances: one is fire and the other one is spruce budworm. The defoliation by spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) was first started in British Columbia of Canada in 1957 near Liard River. Budworm outbreaks were observed in the 1960’s to 1970’s and from the mid 1980’s to the present. Spruce budworm disturbance is one of the major issues of the forest management because of the potential losses of timber and non-timber resources in the boreal forest. To develop a sustainable management of the boreal ecosystem, mathematical modeling approaches for the budworm outbreak have been progressed. For this understanding, we propose a single species reaction-diffusion model appended with Holling type II functional response. In this paper, our main goal is to understand the spreading phenomenon of spruce budworm and subsequently identify its spreading velocity. In order to determine the spreading velocity, we focus on the one-dimensional traveling wave solutions of the model. Our results suggest that the minimal speed of traveling wave solutions can exhibit the spreading velocity of the spruce budworm in boreal forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lakehead University: Boreal Forests of the World. Lakehead University, Faculty of Forestry and the Forest Environment (2007)

  2. Navarro, Lionel, Morin, Hubert, Bergeron, Yves, Girona, Miguel Montoro: Changes in spatiotemporal patterns of 20th century spruce budworm outbreaks in eastern Canadian boreal forests. Front. Plant Sci. 9, 1905 (2018)

    Article  Google Scholar 

  3. Anyomi, K., Mitchell, S., Ruel, J.-C.: Windthrow modelling in old-growth and multi-layered boreal forests. Ecol. Modell. 327, 105–114 (2016)

    Article  Google Scholar 

  4. Wermelinger, B.: Ecology and management of the spruce bark beetle Ips typographus - a review of recent research. For. Ecol. Manage. 202, 67–82 (2004)

    Article  Google Scholar 

  5. Cooke, B.J., Nealis, V.G., Régnière, J.: Insect defoliators as periodic disturbances in northern forest ecosystems. In: Johnson, E.A., Miyanishi, K. (eds.) Plant Disturbance Ecology: The Process and The Response, pp. 487–526. Academic Press, London (2007)

    Chapter  Google Scholar 

  6. MacLean, D.A., Erdle, T.A., Porter, K.B., et al.: The spruce budworm decision support system: forest protection planning to sustain long-term wood supply. Can. J. For. Res. 31, 1742–1757 (2001)

    Article  Google Scholar 

  7. Hennigar, C.R., MacLean, D.A., Porter, K.B., Quiring, D.T.: Optimized harvest planning under alternative foliage-protection scenarios to reduce volume losses to spruce budworm. Can. J. For. Res. 37, 1755–1769 (2007)

    Article  Google Scholar 

  8. Sturtevant, B.R., Cooke, B.J., Kneeshaw, D.D., Maclean, D.A.: Modeling insect disturbance across forested landscapes: insights from the spruce budworm. In: Perera, A.H., Sturtevant, B.R., Buse, L.J. (eds.) Simulation Modeling of Forest Landscape Disturbances, pp. 93–134. Springer, Cham (2015)

    Chapter  Google Scholar 

  9. Morris, R.F.: (ed), The dynamics of epidemic spruce budworm populations. Mem. Entomol. Soc. Can. 31, 202–218 (1963)

  10. Greenbank, D.O., Schaefer, G.W., Rainey, R.C.: Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem. Entomol. Soc. Can. 110, 1–49 (1980)

    Article  Google Scholar 

  11. Royama, T.: Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol. Monogr. 54, 429–462 (1984)

    Article  Google Scholar 

  12. Sanders, C.J., Stark, R.W., Mullins, E.J., Murphy, J. (eds): Recent advances in spruce budworms research. In: Proceedings of the CANUSA spruce budworms research symposium, Bangor, Maine, 16 2- 0. Canadian Forest Service, Ottawa, ON (1985)

  13. Robert, L.E., Kneeshaw, D., Sturtevant, B.R.: Effects of forest management legacies on spruce budworm (Choristoneura fumiferana) outbreaks. Can. J. For. Res. 42(3), 463–475 (2012)

    Article  Google Scholar 

  14. MacLean, D.A.: Impacts of insect outbreaks on tree mortality, productivity, and stand development. Can. Entomol. 148, S138–S159 (2016)

    Article  Google Scholar 

  15. Myers, J.H., Cory, C.: Population cycles in forest Lepidoptera revisited. Ann. Rev. Ecol. Evol. Syst. 44, 565–592 (2013)

    Article  Google Scholar 

  16. MacLean, D.A.: Vulnerability of fir-spruce stands during uncontrolled spruce budworm outbreaks: a review and discussion. For. Chron. 56, 213–221 (1980)

    Article  Google Scholar 

  17. Anderson, D.P., Sturtevant, B.R.: Pattern analysis of eastern spruce budworm Choristoneura fumiferana dispersal. Ecography 34, 488–497 (2011)

    Article  Google Scholar 

  18. Ludwig, D., Jones, D.D., Holling, C.S.: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315–332 (1978)

    Article  Google Scholar 

  19. Arriola, P., Mijares-Bernal, I., Ortiz-Navarro, J.A., Saenz, R.A.: Dynamics of the spruce budworm population under the action of predation and insecticides, Department of Biometrics, Cornell University, Technical Report Series, BU-1517-M (1999)

  20. Al-Khalil, H., Brennan, C., Decker, R., Demirkaya, A., Nagode, J.: Numerical existence and stability of solutions to the distributed spruce budworm model. Involve J. Math. 10(5), 857–879 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Clark, W.C.: Spatial structure relationship in a forest insect system: simulation models and analysis. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 52, 235–257 (1979)

    Google Scholar 

  22. Singh, M., Easton, A.L.A.N., Kozlova, I.: A numerical study of the spruce budworm reaction-diffusion equation with hostile boundaries. Nat. Res. Model. 13(4), 535–549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vaidya, N.K., Wu, J.: Modeling spruce budworm population revisited: impact of physiological structure on outbreak control. Bull. Math. Biol. 70(3), 769–784 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Robeva, R., Murrugarra, D.: The spruce budworm and forest: a qualitative comparison of ODE and Boolean models. Lett. Biomath. 3(1), 75–92 (2016)

    Article  MathSciNet  Google Scholar 

  25. Royama, T., et al.: Analysis of spruce budworm outbreak cycles in New Brunswick, Canada, since 1952. Ecology 86(5), 1212–1224 (2005)

    Article  Google Scholar 

  26. Song, Y.: Comparison theorems for splittings of matrices. Numer. Math. 92, 563–591 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kabir, M.H., Mimura, M., Tsai, J.C.: Spreading waves in a farmers and hunter-gatherers model of the Neolithic transition in Europe. Bull. Math. Biol. 80(9), 2452–2480 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murray, J.D.: Mathematical biology: I. An introduction. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  29. Fisher, R.A.: The advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)

    MATH  Google Scholar 

  30. Sherratt, J.A.: On the transition from initial data to travelling waves in the Fisher-KPP equation. Dyn. Stab. Syst. 13(2), 167–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kolmogorov, A.N., Petrovsky, I.G., Piscounov, N.S.: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Mosc. Univ. Math. Mech. 1, 1–26 (1937)

    Google Scholar 

  32. Faustino, S.-G., Maini, P.K., Kappos, M.E.: A shooting argument approach to a sharp-type solution for nonlinear degenerate Fisher-KPP equations. IMA J. Appl. Math. 57(3), 211–221 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Blais, J.R.: Trends in the frequency, extent, and severity of spruce budworm outbreaks in eastern Canada. Can. J. For. Res. 13(4), 539–547 (1983)

    Article  Google Scholar 

  34. Swetnam, T.W., Lynch, A.M.: Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecol. Monogr. 63(4), 399–424 (1993)

    Article  Google Scholar 

  35. Régnière, J., Nealis, V.G.: Ecological mechanisms of population change during outbreaks of the spruce budworm. Ecol. Entomol. 32, 461–477 (2007)

    Article  Google Scholar 

  36. Eveleigh, E.S., McCann, K.S., McCarthy, P.C., et al.: Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proc. Nat. Acad. Sci. 104, 16976–16981 (2007)

    Article  Google Scholar 

  37. Régnière, J., St-Amant, R., Duval, P.: Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biol. Invasions 14, 1571–1586 (2012)

    Article  Google Scholar 

  38. Larsson, S., Thomee, V.: Finite Difference Methods for Parabolic Problems. In: Partial Differential Equations with Numerical Methods. Texts in Applied Mathematics, vol 45. Springer, Berlin, Heidelberg

Download references

Acknowledgements

The author would like to thank Professor Masayasu Mimura for his valuable suggestions and encouragement to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Humayun Kabir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.H. Reaction-diffusion modeling of the spread of spruce budworm in boreal ecosystem. J. Appl. Math. Comput. 66, 203–219 (2021). https://doi.org/10.1007/s12190-020-01427-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01427-3

Keywords

Mathematics Subject Classification

Navigation