Skip to main content
Log in

Trade-off between fear level induced by predator and infection rate among prey species

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article, an eco-epidemic predator–prey model has been considered where the reproduction of susceptible class of prey is assumed to be affected by the induced fear from predators. The positivity and boundedness of solutions along with existence criterion of the non-negative equilibrium points and their local stability analysis have been performed. Hopf-bifurcation analysis with direction around the co-existence equilibrium point is also performed and it is found that the interference competition rate leads the system to Hopf bifurcation and increases the stable co-existence of all the populations. Furthermore, the predator’s induced fear and infection rate among prey species importantly determine the dynamical complexity of the system. Analytical outcomes of the model system suggest that density of infected prey is directly proportional to the level of fear induced by the predator. Extensive numerical simulations have been carried out to validate all the analytical findings. Finally, Hopf-bifurcation curves of co-dimension two are drawn (with special empathises on interference competition rate) to detect various generalised Hopf-bifurcation and zero Hopf-bifurcation points and stability region of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alam, S.: Risk of disease-selective predation in an infected prey–predator system. J. Biol. Syst. 17(01), 111–124 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Anholt, B.R., Werner, E.E.: Density-dependent consequences of induced behavior. In: The ecology and evolution of inducible defenses, pp 218–230 (1999)

  3. Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions—a comparative study. J. Theor. Biol. 248(1), 10–25 (2007)

    MathSciNet  Google Scholar 

  4. Ball, S.L., Baker, R.L.: Predator-induced life history changes: antipredator behavior costs or facultative life history shifts? Ecology 77(4), 1116–1124 (1996)

    Google Scholar 

  5. Belvisi, S., Venturino, E.: An ecoepidemic model with diseased predators and prey group defense. Simul. Model. Pract. Theory 34, 144–155 (2013)

    Google Scholar 

  6. Benard, M.F.: Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004)

    Google Scholar 

  7. Chattopadhyay, J., Pal, S., Abdllaoui, A.E.: Classical predator–prey system with infection of prey population—a mathematical model. Math. Methods Appl. Sci. 26(14), 1211–1222 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Google Scholar 

  9. Curio, E.: The Ethology of Predation, vol. 7. Springer, New York (2012)

    Google Scholar 

  10. Delgado, M., Molina-Becerra, M., Suárez, A.: Analysis of an age-structured predator–prey model with disease in the prey. Nonlinear Anal. Real World Appl. 7(4), 853–871 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Dorset, E.E., Sakaluk, S.K., Thompson, C.F.: Behavioral plasticity in response to perceived predation risk in breeding house wrens. Evol. Biol. 44(2), 227–239 (2017)

    Google Scholar 

  13. Evans, J.P., Gasparini, C., Pilastro, A.: Female guppies shorten brood retention in response to predator cues. Behav. Ecol. Sociobiol. 61(5), 719–727 (2007)

    Google Scholar 

  14. Gao, X., Pan, Q., He, M., Kang, Y.: A predator–prey model with diseases in both prey and predator. Phys. A 392(23), 5898–5906 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Greenhalgh, D., Haque, M.: A predator–prey model with disease in the prey species only. Math. Methods Appl. Sci. 30(8), 911–929 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Harvey, E.L., Jeong, H.J., Menden-Deuer, S.: Avoidance and attraction: chemical cues influence predator–prey interactions of planktonic protists. Limnol. Oceanogr. 58(4), 1176–1184 (2013)

    Google Scholar 

  17. Hassard, B.D., Hassard, B., Kazarinoff, N.D., Wan, Y.H., Wan, Y.W.: Theory and Applications of Hopf Bifurcation, vol. 41. CUP Archive (1981)

  18. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927)

  19. Kooi, B.W., Venturino, E.: Ecoepidemic predator–prey model with feeding satiation, prey herd behavior and abandoned infected prey. Math. Biosci. 274, 58–72 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, New York (2013)

    Google Scholar 

  21. Li, J., Gao, W.: Analysis of a prey–predator model with disease in prey. Appl. Math. Comput. 217(8), 4024–4035 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Liu, M., Jin, Z., Haque, M.: An impulsive predator–prey model with communicable disease in the prey species only. Nonlinear Anal. Real World Appl. 10(5), 3098–3111 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Maerz, J.C., Panebianco, N.L., Madison, D.M.: Effects of predator chemical cues and behavioral biorhythms on foraging, activity of terrestrial salamanders. J. Chem. Ecol. 27(7), 1333–1344 (2001)

    Google Scholar 

  24. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019)

    Google Scholar 

  25. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: A three species food chain model with fear induced trophic cascade. Int. J. Appl. Comput. Math. 5(4), 100 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Persons, M.H., Walker, S.E., Rypstra, A.L., Marshall, S.D.: Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (araneae: Lycosidae). Anim. Behav. 61(1), 43–51 (2001)

    Google Scholar 

  27. Roy, J., Alam, S.: Dynamics of an autonomous food chain model and existence of global attractor of the associated non-autonomous system. Int. J. Biomath. 12 (2019). https://doi.org/10.1142/S1793524519500827

  28. Roy, J., Alam, S.: Fear factor in a prey-predator system in deterministic and stochastic environment. Stat. Mech. Appl. Phys. A 541 (2019). https://doi.org/10.1016/j.physa.2019.123359

  29. Ruell, E., Handelsman, C., Hawkins, C., Sofaer, H., Ghalambor, C., Angeloni, L.: Fear, food and sexual ornamentation: plasticity of colour development in trinidadian guppies. Proc. R. Soc. B Biol. Sci. 280(1758), 20122019 (2013)

    Google Scholar 

  30. Sasmal, S.K.: Population dynamics with multiple allee effects induced by fear factors—a mathematical study on prey–predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Sha, A., Samanta, S., Martcheva, M., Chattopadhyay, J.: Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect. J. Biol. Dyn. 13(1), 301–327 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Sinha, S., Misra, O., Dhar, J.: Modelling a predator–prey system with infected prey in polluted environment. Appl. Math. Model. 34(7), 1861–1872 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Thiemann, G.W., Wassersug, R.J.: Patterns and consequences of behavioural responses to predators and parasites in rana tadpoles. Biol. J. Linn. Soc. 71(3), 513–528 (2000)

    Google Scholar 

  34. Venturino, E.: The influence of disease on Lotka-Volterra system. Rockymount J. J. Math. 24, 381–402 (1994)

    MathSciNet  MATH  Google Scholar 

  35. Vinterstare, J., Hegemann, A., Nilsson, P.A., Hulthén, K., Brönmark, C.: Defence versus defence: are crucian carp trading off immune function against predator-induced morphology? J. Anim. Ecol. (2019)

  36. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Wang, X., Zou, X.: Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Werner, E.E., Peacor, S.D.: A review of trait-mediated indirect interactions in ecological communities. Ecology 84(5), 1083–1100 (2003)

    Google Scholar 

  39. Wisenden, B.D.: Chemically mediated strategies to counter predation. In: Collin, S.P., Marshall, N.J. (eds.) Sensory processing in aquatic environments, pp. 236–251. Springer, New York, NY (2003)

    Google Scholar 

  40. Xiao, Y., Chen, L.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171(1), 59–82 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shariful Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, D., Roy, J. & Alam, S. Trade-off between fear level induced by predator and infection rate among prey species. J. Appl. Math. Comput. 64, 635–663 (2020). https://doi.org/10.1007/s12190-020-01372-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01372-1

Keywords

Mathematics Subject Classification

Navigation