Skip to main content
Log in

A posteriori analysis of the Newton method applied to the Navier–Stokes problem

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper we study the a posteriori error estimates for the Navier–Stokes equations. The problem is discretized using the finite element method and solved using the Newton iterative algorithm. A posteriori error estimate has been established based on two types of error indicators. Finally, numerical experiments and comparisons with previous works validate the proposed scheme and show the effectiveness of the studied algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Acadamic Press, Cambridge (1978)

    Google Scholar 

  2. Araya, R., Poza, A.H., Valentin, F.: On a hierarchical error estimator combined with a stabilized method for the Navier-Stokes equations. Numer. Methods Partial Differ. Equ. 28, 782–806 (2012)

    MathSciNet  Google Scholar 

  3. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 4, 736–754 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Baker, A., Dougalis, V.A., Karakashian, O.A.: On a higher order accurate fully discrete Galerkin approximation to the Navier–Stokes equation. Math. Comput. 39, 339–375 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Bernardi, C., Dakroub, J., Mansour, G., Sayah, T.: A posteriori analysis of iterative algoriths for Navier–Stokes Problem. ESIAM Math. Modell. Numer. Anal. 50(4), 1035–1055 (2016)

    MATH  Google Scholar 

  6. Bernardi, C., Hecht, F., Verfürth, R.: A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions. ESAIM Math. Modell. Numer. Anal. 43(6), 1185–1201 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Bruneau, C.H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)

    MATH  Google Scholar 

  8. Chaillou, A.L., Suri, M.: Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Eng. 196, 210–224 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Chaillou, A.L., Suri, M.: A posteriori estimation of the linearization error for strongly monotone nonlinear operators. Comput. Methods Appl. Mech. Eng. 205, 72–87 (2007)

    MathSciNet  MATH  Google Scholar 

  10. El Akkad, A., El Khalfi, A., Guessous, N.: An a posteriori estimate for mixed finite element approximations of the Navier–Stokes equations. J. Korean Math. Soc. 48, 529–550 (2011)

    MathSciNet  Google Scholar 

  11. El Alaoui, L., Ern, A., Vohralík, M.: Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200, 2782–2795 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Elman, H.C., Loghin, D., Wathen, A.J.: Preconditioning techniques for Newton’s method for the incompressible Navier–Stokes equations. BIT Numer. Math. 43, 961–974 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Erturk, E.: Discussions on driven cavity flow. Int. J. Numer. Methods Fluids 60, 747–774 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Erturk, E., Corke, T.C., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    MATH  Google Scholar 

  16. Ervin, V., Layton, W., Maubach, J.: A posteriori error estimators for a two-level finite element method for the Navier–Stokes equations. I.C.M.A. Technical Report, University of Pittsburgh (1995)

  17. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

    MATH  Google Scholar 

  18. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–266 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Jin, H., Prudhomme, S.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 159, 19–48 (1998)

    MATH  Google Scholar 

  20. John, V.: Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes equations. Appl. Numer. Math. 37, 501–518 (2001)

    MathSciNet  Google Scholar 

  21. Kim, S.D., Lee, Y.H., Shin, B.C.: Newton’s method for the Navier–Stokes equations with finite-element initial guess of stokes equations. Comput. Math. Appl. 51(5), 805–816 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Pironneau, O.: Méthodes des éléments finis pour les fluides, Collection Recherches en Mathématiques Appliquées, vol. 7. Masson, Paris (1988)

    Google Scholar 

  23. Pousin, J., Rappaz, J.: Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems. Numer. Math. 69(2), 213–231 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Prudhomme, S., Oden, J.T.: Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes equations. Finite Elem. Anal. Des. 33, 247–262 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Sheu, T.W.H., Lin, R.K.: Newton linearization of the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 44(3), 297–312 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Verfürth, R.: A Posteriori Error Estimation Techniques For Finite Element Methods. Numerical Mathematics and Scientific Computation. Academic Press, Oxford (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Faddoul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakroub, J., Faddoul, J. & Sayah, T. A posteriori analysis of the Newton method applied to the Navier–Stokes problem. J. Appl. Math. Comput. 63, 411–437 (2020). https://doi.org/10.1007/s12190-020-01323-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01323-w

Keywords

Mathematics Subject Classification

Navigation