Skip to main content
Log in

Legendre wavelet solution of neutral differential equations with proportional delays

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to solve neutral differential equations with proportional delays by using Legendre wavelet method. Using orthonormal polynomials is the main advantage of this method since it enables a decrease in the computational cost and runtime. Some examples are displayed to illustrate the efficiency and accuracy of the proposed method. Numerical results are compared with various numerical methods in literature and show that the present method is very effectual in solving neutral differential equations with proportional delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen, X., Wang, L.: The variational iteration method for solving a neutral functional-differential equation with proportional delays. Comput. Math. Appl. 59, 2696–2702 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ghaneai, H., Hosseini, M.M., Mohyud-Din, S.T.: Modified variational iteration method for solving a neutral functional-differential equation with proportional delays. Int. J. Numer. Methods Heat Fluid Flow 22(8), 1086–1095 (2012)

    Article  MathSciNet  Google Scholar 

  3. Abolhasani, M., Ghaneai, H., Heydari, M.: Modified homotopy perturbation method for solving delay differential equations. Appl. Sci. Rep. 16(2), 89–92 (2010)

    Google Scholar 

  4. Biazar, J., Ghanbari, B.: The homotopy perturbation method for solving neutral functional-differential equations with proportional delays. J. King Saud Univ. Sci. 24, 33–37 (2012)

    Article  Google Scholar 

  5. Sakar, M.G.: Numerical solution of neutral functional-differential equations with proportional delays. Int. J. Optim. Control Theor. Appl. 7(2), 186–194 (2017)

    Article  MathSciNet  Google Scholar 

  6. Rebenda, J., Šmarda, Z., Khan, Y.: A Taylor method approach for solving of nonlinear systems of functional differential equations with delay. arXiv:1506.0564v1 [math.CA] (2015)

  7. Bhrawy, A.H., Assas, L.M., Tohidi, E., Alghamdi, M.A.: A Legendre–Gauss collocation method for neutral functional-differential equations with proportional delays. Adv. Differ. Equ. 2013, 63 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bhrawy, A.H., Alghamdi, M.A., Baleanu, D.: Numerical solution of a class of functional-differential equations using Jacobi pseudospectral method. Abstr. Appl. Anal. 2013, 9 pages (2013)

  9. Ghomanjani, F., Farahi, M.H.: The Bezier control points method for solving delay differential equation. Intell. Control Autom. 3, 188–196 (2012)

    Article  Google Scholar 

  10. Lv, X., Gao, Y.: The RKHSM for solving neutral functional-differential equations with proportional delays. Math. Methods Appl. Sci. 36, 642–649 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cheng, X., Chen, Z., Zhang, Q.: An approximate solution for a neutral functional-differential equation with proportional delays. Appl. Math. Comput. 260, 27–34 (2015)

    MATH  MathSciNet  Google Scholar 

  12. Ibis, B., Bayram, M.: Numerical solution of the neutral functional-differential equations with proportional delays via collocation method based on Hermite polynomials. Commun. Math. Model. Appl. 1(3), 22–30 (2016)

    Google Scholar 

  13. Cǎruntu, B., Bota, C.: Analytical approximate solutions for a general class of nonlinear delay differential equations. Sci. World J. 2014, 6 pages (2014)

  14. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2003)

    Book  Google Scholar 

  15. Wang, W., Li, S.: On the one-leg-methods for solving nonlinear neutral functional differential equations. Appl. Math. Comput. 193(1), 285–301 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Yüzbaşı, Ş., Sezer, M.: Shifted Legendre approximation with the residual correction to solve pantograph-delay type differential equations. Appl. Math. Model. 39, 6529–6542 (2015)

    Article  MathSciNet  Google Scholar 

  17. Sedaghat, S., Ordokhani, Y., Dehghan, M.: Numerical solution of delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 17, 4815–4830 (2012)

    Article  MathSciNet  Google Scholar 

  18. Mohammadi, F., Hosseini, M.M.: A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. J. Frankl. Inst. 348, 1787–1796 (2011)

    Article  MathSciNet  Google Scholar 

  19. Goswami, J.C., Chan, A.K.: Fundamentals of Wavelets, Theory, Algorithms and Applications. Wiley, New York (2011)

    Book  Google Scholar 

  20. Boggess, A., Narcowich, F.J.: A First Course in Wavelets with Fourier Analysis. Wiley, New York (2001)

    MATH  Google Scholar 

  21. Gu, J.S., Jiang, W.S.: The Haar wavelets operational matrix of integration. Int. J. Syst. Sci. 27, 623–628 (1996)

    Article  Google Scholar 

  22. Razzaghi, M., Yousefi, S.: Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32, 495–502 (2001)

    Article  MathSciNet  Google Scholar 

  23. Mohammadi, F., Hosseini, M.M.: Legendre wavelet method for solving linear stiff systems. J. Adv. Res. Differ. Equ. 2, 47–57 (2010)

    Google Scholar 

  24. Mohammadi, F., Hosseini, M.M., Mohyud-Din, S.T.: Legendre wavelet Galerkin method for solving ordinary differential equations with nonanalytic solution. Int. J. Syst. Sci. 42, 579–585 (2011)

    Article  Google Scholar 

  25. Babolian, E., Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188, 417–426 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Kythe, P.K., Schäferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman and Hall/CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  27. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  Google Scholar 

  28. Yousefi, S.A.: Legendre scaling function for solving generalized Emden–Fowler equations. Int. J. Inf. Syst. Sci. 3, 243–250 (2007)

    MATH  MathSciNet  Google Scholar 

  29. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 6th edn. Elsevier Academic Press, London (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevin Gümgüm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümgüm, S., Özdek, D.E., Özaltun, G. et al. Legendre wavelet solution of neutral differential equations with proportional delays. J. Appl. Math. Comput. 61, 389–404 (2019). https://doi.org/10.1007/s12190-019-01256-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01256-z

Keywords

Mathematics Subject Classification

Navigation