Skip to main content
Log in

Global dynamics of stochastic predator–prey model with mutual interference and prey defense

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Predator–prey interactions with stochastic forcing have been extensively investigated in the literature. However there are not many investigations of such models, that include prey defense. The goal of the current manuscript is to investigate a stochastic predator–prey model with mutual interference, and various Holling type functional responses, where the prey is able to release toxins as defense against a predator. This can also be generalized to include group or herd defense, toxin production and mimicry. We establish local and global existence for the stochastic model, and perform various numerical simulations to support our theoretical results. Our key result is that we have globally existing solutions independent of the magnitude of the toxin release parameter, or the predation rates. We also show that large enough noise intensity in solely the prey, can lead to extinction in the noisy model, for both species, whilst there is persistence in the deterministic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hassell, M.: Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971)

    Article  Google Scholar 

  2. Hassell, M.: Density dependence in single species population. J. Anim. Ecol. 44, 283–295 (1975)

    Article  Google Scholar 

  3. Allaby, M.: A dictionary of Ecology. Oxford University Press, Oxford (2010)

    Google Scholar 

  4. Wang, K.: Existence and global asymptotic stability of positive periodic solution for a predator prey system with mutual interference. Nonlinear Anal Real World Appl. 10, 2774–2783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, K.: Permanence and global asymptotical stability of a predator prey model with mutual interference. Nonlinear Anal Real World Appl. 12, 1062–1071 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, K., Zhu, Y.L.: Global attractivity of positive periodic solution for a Volterra model. Appl. Math. Comput. 203, 493–501 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Wang, K., Zu, Y.: Permanence and global attractivity of a delayed predator–prey model with mutual interference. Int. J. Math. Comput. Phys. Quant. Eng. 7(3), 243–249 (2013)

    Google Scholar 

  8. Wang, K., Zhu, Y.: Periodic solutions, permanence and global attractivity of a delayed impulsive prey–predator system with mutual interference. Nonlinear Anal. Real World Appl. 14(2), 1044–1054 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, L.J.: Permanence of a discrete periodic Volterra model with mutual interference. Discrete Dyn. Nat. Soc. (2009). https://doi.org/10.1155/2009/205481

    MathSciNet  MATH  Google Scholar 

  10. Lin, X., Chen, F.D.: Almost periodic solution for a Volterra model with mutual interference and Beddington–DeAngelis functional response. Appl. Math. Comput. 214, 548–556 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Wang, X.L., Du, Z.J., Liang, J.: Existence and global attractivity of positive periodic solution to a Lotka-Volterra model. Nonlinear Anal. Real World Appl. (2010). https://doi.org/10.1016/j.nonrwa.2010.03.011

    MathSciNet  MATH  Google Scholar 

  12. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  13. Upadhyay, R.K., Mukhopadhyay, A., Iyengar, S.R.K.: Influence of environmental noise on the dynamics of a realistic ecological model. Fluct. Noise Lett. 7(01), 61–77 (2007)

    Article  Google Scholar 

  14. Liu, M., Wang, K.: Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment. J. Theor. Biol. 264, 934–944 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, M., Wang, K.: Population dynamical behavior of Lotka Volterra cooperative systems with random perturbations. Discrete Contin. Dyn. Syst. 33, 2495–2522 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, M., Wang, K.: Dynamics of a two-prey one-predator system in random environments. J. Nonlinear Sci. 23(751), 775 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Rudnicki, R.: Long-time behaviour of a stochastic prey predator model. Stoch. Process. Appl. 108, 93–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ji, C., Jiang, D., Shi, N.: Analysis of a predator–prey model with modified Leslie Gower and Holling type II schemes with stochastic perturabation. J. Math. Anal. Appl. 359(2), 482–490 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Upadhyay, R.K., Agrawal, R.: Modeling the effect of mutual interference in a delay-induced predator–prey system. J. Appl. Math. Comput. 49, 13–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, B.: Existence, extinction and global asymptotical stability of a stochastic predator–prey model with mutual interference. J. Appl. Math. Comput. 46, 79–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113. Springer, berlin (1988)

    Book  MATH  Google Scholar 

  22. Xia, P.Y., Zheng, X.K., Jiang D.Q.: Persistence and non-persistence of a nonautonomous stochastic mutualism system. In: Abstract and Applied Analysis, vol. 2013, Article ID256249, 13 pp (2013)

  23. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  24. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992)

    Book  MATH  Google Scholar 

  25. Box, G.E., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29(2), 610–611 (1958)

    Article  MATH  Google Scholar 

  26. Ji, C., Jiang, D., Shi, N.: Analysis of a predator–prey model with modified Leslie-Gower and Holling type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thakur, N.K., Tiwari, S.K., Dubey, B., Upadhyay, R.K.: Diffusive three species plankton model in the presence of toxic prey: application to Sundarban mangrove wetland. J. Biol. Syst. 25(02), 185–206 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dubey, B., Hussain, J., Raw, S.N., Upadhyay, R.K.: Modeling the effect of pollution on biological species: a socio-ecological problem. Comput. Ecol. Softw. 5(2), 152–174 (2015)

    Google Scholar 

  29. Parshad, R., Quansah, E., Black, K., Beauregard, M.: Biological control via ecological damping: an approach that attenuates non-target effects. Math. Biosci. 273, 23–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Du, B., Hu, M., Lian, X.: Dynamical behavior for a stochastics predator–prey model with HV type functional response. Bull. Malays. Math. Sci. Soc. 40, 486–503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Krivan, V.: Optimal foraging and predatorprey dynamics. Theor. Popul. Biol. 49(3), 265–290 (1996)

    Article  MATH  Google Scholar 

  32. Du, B.: Stability analysis of periodic solution for a complex valued neural networks with bounded and unbounded delays. Asian J. Control 20(2), 881–892 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

RP would like to acknowledge valuable support from the National Science Foundation via DMS-1715377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar Upadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, R.K., Parshad, R.D., Antwi-Fordjour, K. et al. Global dynamics of stochastic predator–prey model with mutual interference and prey defense. J. Appl. Math. Comput. 60, 169–190 (2019). https://doi.org/10.1007/s12190-018-1207-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-1207-7

Keywords

Mathematics Subject Classification

Navigation