Advertisement

A priori error analysis of the stabilized Lagrange multiplier method for elliptic problems with natural norms

  • Sanjib Kumar Acharya
  • Ajit Patel
Original Research

Abstract

In this article the error analysis in the paper, stabilized Lagrange multiplier method for elliptic and parabolic interface problems are extended to the case of natural norm which is independent of mesh size for the case of elliptic interface problems. A stabilized Lagrange multiplier method for second order elliptic interface problems is presented in the framework of mortar method. The requirement of Ladyzhenskaya–Babuška–Brezzi condition for mortar method is alleviated by introducing penalty terms in the formulation. Optimal convergence results are established. Numerical experiments are conducted in support of the theoretical derivations.

Keywords

Interface problems Lagrange multiplier Penalty Mortar method Stabilization Natural norm 

Mathematics Subject Classification

65M06 65M12 65M15 65M60 

References

  1. 1.
    Babuška, I.: The finite element method with Lagrange multipliers. Numer. Math. 16, 179–192 (1973)CrossRefzbMATHGoogle Scholar
  2. 2.
    Babuška, I.: Approximation by Hill functions. Comment. Math. Univ. Carol. 11, 387–811 (1970)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Babuška, I.: Approximation by Hill functions II. Comment. Math. Univ. Carol. 13, 1–22 (1972)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing (Arch. Elektron. Rechnen) 5, 207–213 (1970)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barbosa, H.J.C., Hughes, T.J.R.: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition. Comput. Methods Appl. Mech. Eng. 85, 109–128 (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Barbosa, H.J.C., Hughes, T.J.R.: Boundary Lagrange multipliers in the finite element methods: error analysis in natural norms. Numer. Math. 62, 1–15 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Becker, R., Hansbo, P., Stenberg, R.: A finite element method for domain decomposition with non-matching grids. M2AN Math. Model. Numer. Anal. 37, 209–225 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.L. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Longman Scientific & Technical, Harlow (1994)Google Scholar
  9. 9.
    Ben, F.: The mortar finite element method with Lagrange multipliers. Numer. Math. 84, 173–197 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  11. 11.
    Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chouly, F., Hild, P., Renard, Y.: A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes. ESAIM Math. Model. Numer. Anal. 49, 481–502 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chouly, F., Hild, P., Renard, Y.: A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments. ESAIM Math. Model. Numer. Anal. 49, 503–528 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chouly, F., Hild, P., Renard, Y.: Symmetric and non-symmetric variants of Nitsches method for contact problems in elasticity: theory and numerical experiments. Math. Comput. 84, 1089–1112 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and studies in mathematics, vol. 24 (1985)Google Scholar
  16. 16.
    Gustafsson, T., Stenberg, R., Videman, J.: Error analysis of Nitsche’s mortar method. arXiv:1802.10430v1 [math.NA]
  17. 17.
    Gustafsson, T., Stenberg, R., Videman, J.: Nitsche’s method for unilateral contact problems. arXiv:1805.04283v1 [math.NA]
  18. 18.
    Hansbo, P., Lovadina, C., Perugia, I., Sangalli, G.: A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numer. Math. 100, 91–115 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Juntunen, M.: On the connection between the stabilized Lagrange multiplier and Nitsches methods. Numer. Math. 131, 453–471 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg. 36, 9–15 (1970/1971)Google Scholar
  21. 21.
    Patel, A.: Lagrange multiplier method with penalty for elliptic and parabolic interface problems. J. Appl. Math. Comput. 37, 37–56 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Patel, A., Acharya, S.K., Pani, A.K.: Stabilized Lagrange multiplier method for elliptic and parabolic interface problems. Appl. Numer. Math. 120, 287–304 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stenberg, R.: Mortaring by a method of J.A. Nitsche. In: Idelsohn, S., Onate, E., Dvorkin, E. (eds.) Computational Mechanics: New Trends and Applications. CIMNE, Barcelona (1998)Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2018

Authors and Affiliations

  1. 1.TIFR Centre for Applicable MathematicsBengaluruIndia
  2. 2.The LNM Institute of Information TechnologyJaipurIndia

Personalised recommendations