Abstract
The Wiener index is a topological index of a molecule, defined as the sum of distances between all pairs of vertices in the chemical graph representing the non-hydrogen atoms in the molecule. Hexagonal chains consist of hexagonal rings connected with each other by edges. This class of graphs contains molecular graphs of unbranched catacondensed benzenoid hydrocarbons. A segment of a chain is its maximal subchain with linear connected hexagons. Chains with segments of equal lengths can be coded by binary words. Formulas for the sums of Wiener indices of hexagonal chains of some families are derived and computational examples are presented.
This is a preview of subscription content, access via your institution.



References
Balaban, A.T.: Chemical graphs. L. Symmetry and enumeration of fibonacenes (unbranched catacondensed benzenoids isoarithmic with helicenes and zigzag catafusenes. MATCH Commun. Math. Comput. Chem. 24, 9–38 (1989)
Balaban, A.T., Motoc, I., Bonchev, D., Mekenyan, O.: Topological indices for structure–activity correlations. Top. Curr. Chem. 114, 21–55 (1983)
Canfield, E.R., Robinson, R.W., Rouvray, D.H.: Determination of the Wiener molecular branching index for the general tree. J. Comput. Chem. 6, 598–609 (1985)
Dehmer, M., Emmert-Streib, F. (eds.): Quantitative Graph Theory: Mathematical Foundations and Applications, Discrete Mathematics and Its Applications. Chapman and Hall/CRC, London (2014)
Devillers, J., Balaban, A.T. (eds.): Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach, Reading (1999)
Diudea, M.V. (ed.): QSPR/QSAR Studies by Molecular Descriptors. Nova, Huntington (2001)
Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index for trees: theory and applications. Acta Appl. Math. 66(3), 211–249 (2001)
Dobrynin, A.A., Gutman, I., Klavžar, S., Žigert, P.: Wiener index of hexagonal systems. Acta Appl. Math. 72(3), 247–294 (2002)
Dobrynin, A.A.: On the Wiener index of fibonacenes. MATCH Commun. Math. Comput. Chem. 64(3), 707–726 (2010)
Dobrynin, A.A.: On the Wiener index of certain families of fibonacenes. MATCH Commun. Math. Comput. Chem. 70(2), 565–574 (2013)
Dobrynin, A.A.: Wiener index of hexagonal chains with segments of equal length. In: Dehmer, M., Emmert-Streib, F. (eds.) Quantitative Graph Theory: Mathematical Foundations and Applications, Discrete Mathematics and Its Applications, pp. 81–109. Chapman and Hall/CRC, London (2014)
Entringer, R.C.: Distance in graphs: trees. J. Combin. Math. Combin. Comput. 24, 65–84 (1997)
Gutman, I.: Topological properties of benzenoid systems. Topics Curr. Chem. 162, 21–28 (1992)
Gutman, I., Cyvin, S.J.: Introduction to the Theory of Benzenoid Hydrocarbons. Springer, Berlin (1989)
Gutman, I., Klavžar, S.: Chemical graph theory of fibonacenes. MATCH Commun. Math. Comput. Chem. 55, 39–54 (2006)
Gutman, I., Polansky, O.E.: Mathematical Concepts in Organic Chemistry. Springer, Berlin (1986)
Gutman, I., Yeh, Y.N., Lee, S.L., Luo, Y.L.: Some recent results in the theory of the Wiener number. Indian J. Chem. 32A, 651–661 (1993)
Gutman, I., Furtula, B., (eds.): Distance in Molecular Graphs—Theory. Mathematical Chemistry Monographs, 12. University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2012)
Gutman, I., B. Furtula, B., (eds.): Distance in Molecular Graphs—Applications, Mathematical Chemistry Monographs, 13. University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2012)
Knor, M., Škrekovski, R., Tepeh, A.: Mathematical aspects of Wiener index. Ars Math. Contemp. 11(2), 327–352 (2016)
Nikolić, S., Trinajstić, N., Mihalić, Z.: The Wiener index: developments and applications. Croat. Chem. Acta 68, 105–129 (1995)
Polansky, O.E., Bonchev, D.: The Wiener number of graphs. I. General theory and changes due to some graph operations. MATCH Commun. Math. Comput. Chem. 21, 133–186 (1986)
Rouvray, D.H.: Should we have designs on topological indices? In: King, R.B. (ed.) Chemical Application of Topology and Graph Theory, pp. 159–177. Elsevier, Amsterdam (1983)
Rouvray, D.H.: The modeling of chemical phenomena using topological indices. J. Comput. Chem. 8, 470–480 (1987)
Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)
Trinajstić, N.: Chemical Graph Theory. CRC Press, Boca Raton (1983, 1992)
Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the Russian Foundation for Basic Research (Project Nos. 16-01-00499, 17-51-560008), Iranian National Science Foundation (Project No. 96004167) and the Program of fundamental scientific researches of the SB RAS I.5.1 (Project No. 0314-2016-0016).
Rights and permissions
About this article
Cite this article
Dobrynin, A.A., Estaji, E. Wiener index of certain families of hexagonal chains. J. Appl. Math. Comput. 59, 245–256 (2019). https://doi.org/10.1007/s12190-018-1177-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-018-1177-9